Union Pacific Railroad Company Research & Mechanical Standards ## REPORT OF TESTS Locomotive 4007 Equipped with single stack, annular ported exhaust nozzle and Master Mechanic's front end arrangement Equipped with double stack, multiple jet nozzles and modified Master Mechanic's front end arrangement October 10-26, 1948 Office of Gen'l Supto MP&M Omaha, March 9, 1949 ## Union Pacific Railroad Company Research & Mechanical Standards ## SUMMARY OF TEST RESULTS between Cheyenne & Laramie | | | A 19 | | | | | |---|--------|--------|--------------------|--------|------------------------|----------------------| | | Westbo | ound | Eastbo | und | Eastbound
Westbound | md and
I-Combined | | Locomotive No. | 4007 | 4010 | 4007 | 4010 | 4007 | 4010 | | No of Trips | 4 | 4 | 5 | 4 | 9 | 8 | | Ave. No. of Stops
Per Trip | 3.25 | 1.50 | 4.20 | 3,50 | 3.73 | 2.50 | | Ave . Running Time | 2148" | 2135" | 2114" | 21 5" | 2142" | 210" | | Ave. Speed MPH | 20.3 | 22.0 | 25.6 | 27.4 | 23.0 | 24.7 | | Ave Tons Per Trip | 2611 | 2681 | 3920 | 3906 | 3266 | 3294 | | Ave. MGTM Per Trip | 148.30 | 152,28 | 222.66 | 221.86 | 189.61 | 187.07 | | Ave Coal Pounds
Per Trip | 41882 | 33134 | 25667 | 23270 | 32874 | 28202 | | Ave. Coal Per MGTM | 282.4 | 217.6 | 115 ₀ 3 | 104.9 | 198.85 | 161.25 | | Percent Increase
in Fuel Consump-
tion | 29.8 | do | 9.9 | 416- | 23.3 | G 3 | | Max. Indicated
Horsepower | 4346 | 5078 | 4333 | 5503 | 4346 | 5503 | | Draft in inches of water at front flue sheet for following back pressures: 10 12 14 | | | | | 8°1
9°1
9°9 | 11.7
13.8
15.5 | | 16 18 | | | | | 10.5 | 16.9 | | Temperature OF.
steam to cylinders
at following back
pressures: | | | | | 7 | | | 12
14
16 | | | | | 651
667
678 | 707
723
733 | The results of this test show the desirability of using the double stack, multiple jet exhaust nozzles and modified Master Mechanic's front end arrangement for drafting 4000 class locomotives. Locomotive 4010, which is equipped with the double stack arrangement, was used for comparison with locomotive 4007, which is equipped with a single stack, annular ported exhaust nozzle and Master Mechanic's front end arrangement. The front end arrangement on locomotive 4010 includes a 45-degree deflector plate extending forward and upward from the bottom of an 18-inch strip of netting across the back plate. With this deflector plate the front end has proven to be a very effective spark arrester and can be considered satisfactory in this respect. The above summary shows some of the more important results of this test and indicates higher front end efficiency and better overall efficiency for locomotive 4010. Averages are based on complete trips between Cheyenne and Laramie Indicated horsepower is taken from Table VII, temperature of steam to cylinders is from Figure No. 3 and draft in inches of water from Figure No. 12. ### LOCOMOTIVES The important locomotive dimensions are shown in the following tabulation: | General classification | 4-8-8-4 | |---|-------------| | Service | Freight | | Starting tractive force, pounds | 135,375 | | Weight locomotive in working order, pounds | 762,000 | | Weight locomotive light, pounds | 697,300 | | Weight tender light, pounds | 171,500 | | Weight tender loaded, pounds | 427,500 | | Weight locomotive and tender loaded, pounds | 1,189,500 | | Tender water capacity, gallons | 24,000 | | Tender coal capacity, tons | 28 | | Expansion of steam | Single | | Number of cylinders | 4. | | Cylinder diameter, inches | 23-3/4 | | Cylinder stroke, inches | 32 | | Valve gear | Walschaerts | | | | #### VALVES: | Diameter, inches
Full gear travel, | inches | 12 | |---------------------------------------|--------|-------| | Lap, inches | | 1-3/8 | | Lead, inches | | 1-3/8 | | Exhaust clearance, | inches | 1/8 | #### BOILER: | Working pressure, pounds per square in | ch gage 300 | |--|-------------| | Length tubes and flues, feet, inches | 221018 | | Number of 2-1/4 inch diameter tubes | 75 | | Number of 4-inch diameter flues | 184 | #### FIREBOX: | Length, inches | 235~1/32 | |--------------------------------|----------| | Width, inches | 96-3/16 | | Grate area, square feet | 150 | | Number of Security Circulators | 7 | | Percent air opening grates | 12 | ### HEATING SURFACE, Square Feet: | Firebox and combustion chamber | 593 | |-----------------------------------|------| | Circulators | 111 | | Boiler tubes | 967 | | Boiler flues | 4218 | | Total evaporative heating surface | 5889 | | Superheater heating surface | 2466 | | Total heating surface | 8355 | ### TERRITORY AND TRAINS : Tests were run in both directions between Cheyenne and Laramie. All tests were made in freight service and with one exception all westbound trips were made without a helper locomotive. Trains hauled were representative of the regular freight movement. ### DATA: All data necessary for the determination of boiler, cylinder and exhaust steam injector performance were taken. Coal consumption was determined by counting the revolutions made by the stoker conveyor screw. This was done by means of an odometer operated by a device driven by the conveyor screw. The amount of coal delivered per revolution was determined by emptying a tank which had been filled to the specified capacity of 56,000 lbs. of coal and counting the revolutions required. A number of checks were made and an average coal factor determined which could be applied to all Standard MB stokers. This factor of 8 pounds per revolution checks very closely with data from the Standard Stoker Company. This method of measuring coal is considered more accurate than the method formerly used of measuring coal space volume, where small errors in measurement may cause errors of several hundred pounds in determining the weight of coal used. Tank water consumption was determined by measuring the water in the tank at the start of a run, before and after taking water and at the end of a run. A continuous record was kept of the time the exhaust steam injector was operating on exhaust steam, on live steam and when shut off. A venturi meter was applied to the water intake line of the exhaust steam injector. With this device the rate at which tank water was being fed to the boiler could be determined at any time, and the amount of tank water delivered on live steam operation was calculated from the injector time log. For accurate timing of the injector operation an automatic signal was devised which indicated when the injector was started, when it changed from live steam operation to exhaust steam operation, from exhaust steam operation to live steam operation and when the injector was shut off. A record was kept of the train movement, tonnage and number of ears. The following pressures were observed and recorded: - 1. Boiler - 2. Valve chamber - 3. Exhaust nozzle stand - 4. Exhaust steam in injector - 5. Live steam to injector The following temperatures were observed and recorded: - 1. Tank water - 2. Delivery water - 3. Steam to right cylinders - 4. Steam to left cylinders - 5. Exhaust steam from right back cylinder - 6. Exhaust steam from left back cylinder 7. Exhaust steam from front engine. - 8. Smoke box gases right side - 9. Smoke box gases right side Draft was measured near the top and bottom of the smoke box, approximately one foot shead of the front flue sheet. A speed recorder was used to indicate and record the speed and to correlate temperature and pressure readings with the speed. Correlation of all readings with speed was accomplished by marking the speed recorder tape before and after taking each set of readings. By this procedure it is possible to calculate indicated horsepower for each reading and make an accurate comparison with theoretical horsepower-speed curves. These records may also be used in conjunction with the condensed profile to show the speed and required back pressure at any desired point with a given train. #### COMPILED DATA AND GRAPHICAL PRESENTATION: The data taken during the tests and the calculated results are shown in charts and tables compiled under the following headings: | Table I | General Performance | |-----------|---| | Table II | Fuel - Water - Evaporation | | Table III | Average Pressures and Temperatures | | Table IV | Evaporation and Temperature Rise due
to Exhaust Steam Condensed by Ex-
haust Steam Injector | | Table V | Elesco Exhaust Steam Injector
Performance | | Table VI | Fuel Saved by Operation of Elesco
Exhaust Steam Injector | | Table VII | Water Rates and Indicated Horsepower | | The | Collowing curves are included: | The following curves are included: Figure 1 Relation between Firing Rate and Boiler Heat Absorption Rate | Figure | 8 | Relation between Evaporation and Firing
Rate and Relation between Evaporation
Ratio and Firing Rate | |--------|----|---| | F1gure | 8 | Relation between Exhaust Stand Pressure
and Temperature of Steam to Engines and
Relation between Exhaust Stand Pressure
and Temperature of Smoke Box Gases | | Figure | 4 | Relation between Firing Rate and Pounds
of Coal Saved and Relation between Firin
Rate and Precent Coal Saved by Exhaust
Steam Injector | | Figure | 5 | Relation between Firing Rate and Gross
Ton Miles per Train Hour | | Figure | 6 | Relation between Gross Thousand Ton
Miles and Pounds of Coal per Gross
Thousand Ton Miles | | Figure | 7 | Relation between Exhaust Stand Pressure and Steam to Engines | | Figure | 8 | Relation between Exhaust Stand Pressure and Indicated
Horsepower | | Figure | 9 | Relation between Steam to Engines and
Indicated Horsepower | | Figure | 10 | Relation between Indicated Horsepower
and Pounds of Steam per Indicated
Horsepower Hour | | Figure | 11 | Relation between Indicated Horsepower and Speed | | Figure | 12 | Relation between Exhaust Stand Pressure and Draft | ## GENERAL PERFORMANCE: At the time of the test the locomotives had comparable flue miles, machinery and appurtenances were in generally good condition, and valves were set as nearly as possible the same on both locomotives. The essential difference in the locomotives was, therefore, in the front end arrangement and admission of overfire air in the firebox. Locomotive 4007 was equipped with a single stack, annular ported exhaust nozzle and Master Mechanic's front end arrangement. Locomotive 4010 was equipped with double stacks, multiple jet exhaust nozzle and modified Master Mechanic's front end. Overfire air was admitted in the firebox through twenty-eight 2-1/4" tubes. The general performance of locomotives 4007 and 4010 is shown clearly on charts I to VIII on which are presented the speed recorder tapes arranged with a condensed profile of the territory over which the tests were run. From the time checks on the recorder tapes it is possible to accurately correlate data such as speed, gradient, back pressure and indicated horsepower. In Tables I, II, III and VII data are tabulated which show the comparative performance of the two locomotives. Because of the long descending grades both eastbound and westbound from Sherman, each test run was closed out at Sherman. All totals and averages are, therefore, more nearly representative of the general performance of the locomotives than if the entire run between Cheyenne and Laramie had been included. The superior performance of locomotive 4010 is shown both on the speed recorder tapes and in Figures 5, 6, 7, 8, 9, 10 and 11. ## EXHAUST STEAM INJECTOR PERFORMANCE: Both injectors performed satisfactorily although it was necessary to replace the size 19 tubes in the injector on locomotive 4007 with smaller size 18 tubes. This was because of the reduced capacity of the engines after the application of the annular ported exhaust nozzle. The better performance characteristics of the exhaust injector of locomotive 4010 shown in Figure 4 are due to the higher temperatures of the exhaust steam recovered. ## BOILER PERFORMANCE: Boiler performances are shown in Figure 1. The better heat absorption rate of the boiler of locomotive 4010 is due to better combustion of fuel and less stack loss. This is due to the use of overfire air and a more efficient front end arrangement. At a given firing rate, the heat absorption rate of identical boilers should be the same, providing the fuel is utilized. The difference in unburned fuel loss is, therefore, responsible for the difference in boiler heat absorption rate at a given firing rate. #### FRONT END PERFORMANCE: Figure 12 shows clearly the greater efficiency of the front end arrangement in locomotive 4010. It is interesting to note the small difference in draft from top to bottom of the flue sheets and especially in locomotive 4007 with a low table plate. The vertical draft distribution is good as shown by draft readings and although readings were not taken on the horizontal center line of the boiler, it is reasonable to assume good distribution horizontally. The draft at the front flue sheet in locomotive 4010 is greater than that in locomotive 4007 by 50% at 10 PSI exhaust stand pressure to 61.8% greater at 17 PSI exhaust stand pressure. ### DISCUSSION OF FRONT END ARRANGEMENTS: The important front end dimensions are shown by following tabulation: | | Locomotive | Locomotive
4010 | |--|--|--| | Type nozzle
Nozzle area | Annular ported Trip Oct. 10 - 49.5 sq. in. (16-3/4" OD and 10-5/8" dia. plate) | Multiple jet 56.5 sq. in. (8 - 3 dia. nozzles) | | | Other trips - 46.9 sq. in. (16-3/4" OD and 11" dia. plate) | | | Vertical distance - nozzle tip
to seat on exhaust base | 26-1/2" | 16-3/4 ⁿ | | Vertical distance - nozzle tip
to bottom of stack extension | 15-1/4** | 10-1/32" | | Total length stack including extension | 51** | 66 th | | Inside diameter stack at choke | 275 | 23~3/4 th | | | | | | | Locomotive
4007 | Locomotive
4010 | |--|------------------------------|---------------------------------------| | Inside diameter stack at top | 29% | 28-3/4* | | Type of front end arrangement | Master
Mechanics | Modified
Master
Mechanics | | Table plate | 2-1/2 x 2-1/2
netting | Solid plate | | Back plate | Solid plate | Plate with 18' strip of 2-1/2 netting | | Net gas area through tubes and
flues
At superheater return bend
At front flue sheet | 1435 sq. in.
1675 sq. in. | 1435 sq. in.
1675 sq. in. | | Net area through front end arrangement | 1740 sq. in. | 1929 sq. in. | | Area of stacks at top | 661 sq. in. | 1298 sq. in. | | Area of stacks at choke | 573 sq. in. | 886 sq. in. | | Ratio of stack choke area to nozzle area | 12.2 | 15.7 | | Perimeter of exhaust steam jet at nozzle | 69.0 in. | 75.4 in. | For a given locomotive and any given front end arrangement, which includes stack and exhaust nozzle, there is a definite upper limit of output of the locomotive at which the weight of air supplied will equal that required for the fuel burned. Below this limit the percentage of excess air will increase with decreasing locomotive output, above this limit there will be a deficiency of air. The position of the limits is determined by the characteristics of the engine boiler and of the front end arrangement. With locomotives of the same design which have the same resistance to gas flow through the tubes, flues and firebox, the number of inches of water draft per pound of cylinder back pressure or exhaust stand pressure, when measured in the same relative position near the front flue sheet, may be used as the criterion of the performance of front end arrangements. The entrainment ratio, which is the ratio of the weight of gases moved to the weight of steam required to move the gases, of a front end arrangement, increases with decreased back pressure, decreased front end resistance and increased ratio of stack area to nozzle area. As shown in the above tabulation, the annular ported exhaust nozzle of 49.5 sq. inches was used only on one test run. The area was then reduced to 46.9 sq. inches to improve the steaming qualities of the locomotive. The multiple jet exhaust nozzle compared with the annular ported exhaust nozzle has 20.5 percent greater area and due to a better coefficient of discharge will pass 24.6 percent more steam at a given back pressure. This means that more flue gas can be moved at a given back pressure. Also, either the same power may be developed on less back pressure or more power may be developed on the same back pressure. The net area through the front end arrangement is 10.9 percent greater in locomotive 4010 than in locomotive 4007. It, therefore, offers less resistance and permits easier flow of gases and consequently less energy is needed to move the required amount of gases through the front end. The larger ratio of stack to nozzle area of locomotive 4010 also helps increase the entrainment ratio of the front end. Other front end dimensions although of lesser importance also serve to give the front end arrangement of locomotive 4010 a higher entrainment ratio than the front end arrangement of locomotive 4007. Since the characteristics of engines and boilers of the two test locomotives are essentially the same, maximum output of the locomotives will be limited by the front end arrangements, and differences of maximum output will be attributable to differences in front end arrangements. Union Pacific Railroad Company Research & Mechanical Standards #### REPORT OF TESTS Locomotive 4007 Equipped with single stack, annular ported exhaust nozzle and Master Mechanic's front end arrangement Locomotive 4010 Equipped with double stack, multiple jet nozzles and modified Master Mechanic's front end arrangement Ostober 10-26, 1948 Office of Gen'l Supt. MP&M Omaha, February 21, 1949 #### SUMMARY OF RESULTS OF TEST This test shows the desirability of using the double stack, multiple jet exhaust nozzles and modified Master Mechanic's front end arrangement for the drafting of 4000 class locomotives. This front end arrangement includes a 45-degree deflector plate extending forward and upward from the bottom of an 18-inch strip of netting across the back plate. With this deflector plate the front end has proven to be a very effective spark arrester and can be considered entirely satisfactory in this respect. Higher front end efficiency was indicated as shown by: - 1. Higher drafts for a given back pressure. - 2. Higher efficiency of combustion of the coal. - 3. Higher cylinder efficiency by reduction of cylinder back pressures and increased superheated steam temperatures. - 4. Less coal fired per thousand gross ton miles. #### LOCOMOTIVES The important locomotive dimensions are shown in the following tabulation: | General classification | 4-8-8-4 | |---|-------------| | Service | Freight | | Starting tractive force, pounds | 135,375 | | Weight locomotive in working order, pounds | 762,000 | | Weight locomotive light, pounds | 697,300 | | Weight tender light, pounds | 171,500 | | Weight tender loaded, pounds | 427,500 | | Weight locomotive and tender loaded, pounds | | | Tender water capacity, gallons | 24,000 | | Tender coal capacity, tons | 28 | | Expansion of steam | Single | | Number of cylinders | 4 | | Cylinder diameter, inches | 23-3/4 | |
Cylinder stroke, inches | 32 | | Valve gear | Walscheerts | | | | #### VALVES: | Diameter, inches
Full gear travel, i | nches | 12 | |---|--------|-------| | Lap, inches | | 1-3/8 | | Lead, inches | | 1/4 | | Exhaust clearance, | inches | 1/8 | #### BOILER: | | pressure, pounds per square inch gage | 300 | |--------|---------------------------------------|------| | Length | tubes and flues, feet, inches | 2210 | | Number | of 2-1/4 inch diameter tubes | 75 | | Number | of 4-inch diameter flues | 104 | #### FIREBOX: | Length, inches | | 235-1/32 | |-------------------|---------------|----------| | Width, inches | | 96-3/16 | | Grate area, squar | e feet | 150 | | Number of Securit | y Circulators | 7 | | Percent air openi | | 12 | ### HEATING SURFACE, Square Feet: | Firebox and combustion chamber | 593 | |-----------------------------------|------| | Circulators | 111 | | Boiler tubes | 967 | | Boiler flues | 4218 | | Total evaporative heating surface | 5889 | | Superheater heating surface | 2466 | | Total heating surface | 8355 | ### TERRITORY AND TRAINS: Tests were run in both directions between Cheyenne and Laramie. All tests were made in freight service and with one exception all westbound trips were made without a helper locomotive. Trains hauled were representative of the regular freight movement. ### DATA: All data necessary for the determination of boiler, cylinder and exhaust steam injector performance were taken. Coal consumption was determined by counting the revolutions made by the stoker conveyor screw. This was done by means of an odometer operated by a device driven by the conveyor screw. The amount of coal delivered per revolution was determined by emptying a tank which had been filled to the specified capacity of 56,000 lbs. of coal and counting the revolutions required. A number of checks were made and an average coal factor determined which could be applied to all Standard MB stokers. This factor of 8 pounds per revolution checks very closely with data from the Standard Stoker Company. This method of measuring coal is considered more accurate than the method formerly used of measuring coal space volume, where small errors in measurement may cause errors of several hundred pounds in determining the weight of coal used. Tank water consumption was determined by measuring the water in the tank at the start of a run, before and after taking water and at the end of a run. A continuous record was kept of the time the exhaust steam injector was operating on exhaust steam, on live steam and when shut off. A venturi meter was applied to the water intake line of the exhaust steam injector. With this device the rate at which tank water was being fed to the boiler could be determined at any time, and the amount of tank water delivered on live steam operation was calculated from the injector time log. For accurate timing of the injector operation an automatic signal was devised which indicated when the injector was started, when it changed from live steam operation to exhaust steam operation, from exhaust steam operation to live steam operation and when the injector was shut off. A record was kept of the train movement, tonnage and number of cars. The following pressures were observed and recorded: - 1. Boiler - 2. Valve chamber - 3. Exhaust nozzle stand - 4. Exhaust steam in injector - 5. Live steam to injector The following temperatures were observed and recorded: - 1. Tank water - 2. Delivery water - 3. Steam to right cylinders - 4. Steam to left cylinders - 5. Exhaust steam from right back cylinder - 6. Exhaust steam from left back cylinder - 7. Exhaust steam from front engine. - 8. Smoke box gases right side - 9. Smoke box gases left side Draft was measured near the top and bottom of the smoke box, approximately one foot ahead of the front flue sheet. A speed recorder was used to indicate and record the speed and to correlate temperature and pressure readings with the speed. Correlation of all readings with speed was accomplished by marking the speed recorder tape before and after taking each set of readings. By this procedure it is possible to calculate indicated horsepower for each reading and make an accurate comparison with theoretical horsepower-speed curves. These records may also be used in conjunction with the condensed profile to show the speed and required back pressure at any desired point with a given train. #### COMPILED DATA AND GRAPHICAL PRESENTATION: The data taken during the tests and the calculated results are shown in charts and tables compiled under the following headings: | Table | I | General Performance | |-------|----------------|---| | Table | II | Fuel - Water - Evaporation | | Table | III | Average Pressures and Temperatures | | Table | IV | Evaporation and Temperature Rise due
to Exhaust Steam Condensed by Ex-
haust Steam Injector | | Table | V | Elesco Exhaust Steam Injector
Performance | | Table | VI | Fuel Saved by Operation of Elesco
Exhaust Steam Injector | | Table | VII | Water Rates and Indicated Horsepower | | | D2 - 0 - 9 9 0 | | The following curves are included: Figure 1 Relation between Firing Rate and Boiler Heat Absorption Rate | | | 20대 회사 20대 | |--------|----|---| | Figure | 8 | Relation between Evaporation and Firing
Rate and Relation between Evaporation
Ratio and Firing Rate | | Figure | 3 | Relation between Exhaust Stand Pressure
and Temperature of Steam to Engines and
Relation between Exhaust Stand Pressure
and Temperature of Smoke Box Gases | | Figure | 4 | Relation between Firing Rate and Pounds
of Coal Saved and Relation between Firing
Rate and Precent Goal Saved by Exhaust
Steam Injector | | Figure | 5 | Relation between Firing Rate and Gross
Ton Miles per Train Hour | | Figure | 6 | Relation between Gross Thousand Ton
Miles and Pounds of Goal per Gross
Thousand Ton Miles | | Figure | 7 | Relation between Exhaust Stand Pressure and Steam to Engines | | Figure | 8 | Relation between Exhaust Stand Pressure and Indicated Horsepower | | Figure | 9 | Relation between Steam to Engines and
Indicated Horsepower | | Figure | 10 | Relation between Indicated Horsepower and Pounds of Steam per Indicated Horsepower Hour | | Figure | 11 | Relation between Indicated Horsepower and Speed | | Figure | 12 | Relation between Exhaust Stand Pressure and Draft | | | | | ## GENERAL PERFORMANCE: At the time of the test the locomotives had comparable flue miles, machinery and appurtenances were in generally good condition, and valves were set as nearly as possible the same on both locomotives. The essential difference in the locomotives was, therefore, in the front end arrangement and admission of overfire air in the firebox. Locomotive 4007 was equipped with a single stack, annular ported exhaust nozzle and Master Mechanic's front end arrangement. Locomotive 4010 was equipped with double stacks, multiple jet exhaust nozzle and modified Master Mechanic's front end. Overfire air was admitted in the firebox through twenty-eight 2-1/4" tubes. The general performance of locomotives 4007 and 4010 is shown clearly on charts I to VIII on which are presented the speed recorder tapes arranged with a condensed profile of the territory over which the tests were run. From the time checks on the recorder tapes it is possible to accurately correlate data such as speed, gradient, back pressure and indicated horsepower. In Tables I, II, III and VII data are tabulated which show the comparative performance of the two locomotives. Because of the long descending grades both eastbound and westbound from Sherman, each test run was closed out at Sherman. All totals and averages are, therefore, more nearly representative of the general performance of the locomotives than if the entire run between Cheyenne and Laramie had been included. The superior performance of locomotive 4010 is shown both on the speed recorder tapes and in Figures 5, 6, 7, 8, 9, 10 and 11. ## EXHAUST STEAM INJECTOR PERFORMANCE: Both injectors performed satisfactorily although it was necessary to replace the size 19 tubes in the injector on locomotive 4007 with smaller size 18 tubes. This was because of the reduced capacity of the engines after the application of the annular ported exhaust nozzle. The better performance characteristics of the exhaust injector of locomotive 4010 shown in Figure 4 are due to the higher temperatures of the exhaust steam recovered. ## BOILER PERFORMANCE: Boiler performances are shown in Figure 1. The better heat absorption rate of the boiler of locomotive 4010 is due to better combustion of fuel and less stack loss. This is due to the use of overfire air and a more efficient front end arrangement. At a given firing rate, the heat absorption rate of identical boilers should be the same, providing the fuel is utilized. The difference in unburned fuel loss is, therefore, responsible for the difference in boiler heat absorption rate at a given firing rate. #### FRONT END PERFORMANCE: Figure 12 shows clearly the greater efficiency of the front end arrangement in locomotive 4010. It is interesting to note the small difference in draft from top to bottom of the flue sheets and especially in locomotive 4007 with a low table plate. The vertical draft distribution is good as shown by draft readings and although readings were not taken on the horizontal center line of the boiler, it is reasonable to assume good distribution horizontally. The draft at the front flue sheet in locomotive 4010 is greater than that in locomotive 4007 by 50% at 10 PSI exhaust stand pressure to 61.8% greater at 17 PSI exhaust stand pressure. ## DISCUSSION OF FRONT END ARRANGEMENTS: The
important front end dimensions are shown by following tabulation: | | Locomotive | Locomotive
4010 | |--|---|---| | Type nozzle
Nozzle area | Annular ported Trip Oct. 10 - 49.5 sq. in. (16-3/4" OD and 10-5/8" dia. plate) Other trips - 46.9 sq. in. (16-3/4" OD and 11" dia. plate) | Multiple jet 56.5 sq. in. (8 - 3* dia. nozzles) | | Vertical distance - nozzle tip
to seat on exhaust base | 26-1/210 | 16-3/4 ^m | | Vertical distance - nessle tip
to bottom of stack extension | 15-1/4" | 10-1/32** | | Total length stack including extension | 51.18 | 66 th | | Inside diameter stack at choke | 278 | 23-3/4 | | | Locomotive
4007 | Locomotive
4010
28-3/4* | | | | |--|------------------------------|---|--|--|--| | Inside diameter stack at top | 29 th | | | | | | Type of front end arrangement | Master
Mechanics | Modified
Master
Mechanics | | | | | Table plate | 2-1/2 x 2-1/2
netting | Solid plate | | | | | Back plate | Solid plate | Plate with 18"
strip of 2-1/2
2-1/2 netting | | | | | Net gas area through tubes and
flues
At superheater return bend
At front flue sheet | 1435 sq. in.
1675 sq. in. | 1435 sq. in.
1675 sq. in. | | | | | Net area through front end arrangement | 1740 sq. in. | 1929 sq. in. | | | | | Area of stacks at top | 661 sq. in. | 1298 sq. in. | | | | | Area of stacks at choke | 573 aq. in. | 886 sq. in. | | | | | Ratio of stack choke area to nozzle area | 12.2 | 15.7 | | | | | Perimeter of exhaust steam jet at nozzle | 69.0 in. | 75.4 in. | | | | For a given locomotive and any given front end arrangement, which includes stack and exhaust nozzle, there is a definite upper limit of output of the locomotive at which the weight of air supplied will equal that required for the fuel burned. Below this limit the percentage of excess air will increase with decreasing locomotive output, above this limit there will be a deficiency of air. The position of the limits is determined by the characteristics of the engine boiler and of the front end arrangement. With locomotives of the same design which have the same resistance to gas flow through the tubes, flues and firebox, the number of inches of water draft per pound of cylinder back pressure or exhaust stand pressure, when measured in the same relative position near the front flue sheet, may be used as the criterion of the performance of front end arrangements. The entrainment ratio, which is the ratio of the weight of gases moved to the weight of steam required to move the gases, of a front end arrangement, increases with decreased back pressure, decreased front end resistance and increased ratio of stack area to nozzle area. As shown in the above tabulation, the annular ported exhaust nozzle of 49.5 sq. inches was used only on one test run. The area was then reduced to 46.9 sq. inches to improve the steaming qualities of the locomotive. The multiple jet exhaust nozzle compared with the annular ported exhaust nozzle has 20.5 percent greater area and due to a better coefficient of discharge will pass 24.6 percent more steam at a given back pressure. This means that more flue gas can be moved at a given back pressure. Also, either the same power may be developed on less back pressure or more power may be developed on the same back pressure. The net area through the front end arrangement is 10.9 percent greater in locomotive 4010 than in locomotive 4007. It, therefore, offers less resistance and permits easier flow of gases and consequently less energy is needed to move the required amount of gases through the front end. The larger ratio of stack to nozzle area of locomotive 4010 also helps increase the entrainment ratio of the front end. Other front end dimensions although of lesser importance also serve to give the front end arrangement of locomotive 4010 a higher entrainment ratio than the front end arrangement of locomotive 4007. Since the characteristics of engines and boilers of the two test locomotives are essentially the same, maximum output of the locomotives will be limited by the front end arrangements, and differences of maximum output will be attributable to differences in front end arrangements. Locomotive 4007 was available for service 28 days in July, being out of service July 10 for nozzle change and July 23 and 24 for monthly inspection, with total mileage of 7181 miles for this month. Locomotive 4007 has been released to pool service to ob- C-574. J. Gogerty ### GENERAL PERFORMANCE | DATE
1948 | Numb
Ca:
Loads | er of
rs
Emptys | No.
of
Stops | Tons | CHEM | Ton
Hrs. | | ATION OF DEL | AD | RUNN
Hrs. | ING
Mino | Total
Tank Water
Pounds | Total Coal
Fired
Pounds | Per GM
Pounds
Water | Pounds
Coal | Average
Speed
MPR | |---|----------------------|-----------------------|--------------------|---------------------------------|------------------------------------|-------------|----------------------|--------------|--------------------|--------------|----------------------|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|------------------------------| | | | | 100 | | | We | stboun | d - Che | yenne 1 | to She | rman - | 30.9 Miles | | | | | | 1000 4007
00tober 10
12
13
14 | 53
63
54
52 | 3 17 2 | 2 4 2 3 | 2431
*2958
**2832
2616 | 75.12
72.08
87.51
80.83 | 2 3333 | 15
5
43
11 | 0 1 1 1 | 8
11
15
3 | NWW | 7
54
28
8 | 147262
137175
191400
166600 | 37552
35312
48640
36632 | 1960.4
1903.1
2187.2
2061.1 | 499°9
489°9
555°8
453°2 | 14.6
16.3
12.5
14.5 | | 1000 4010
Ostober 23
24
25
26 | 46
54
57
50 | 12
4
9
14 | 1 31 | 25 08
2709
2735
2773 | 77.50
83.71
84.51
85.69 | 1 2 1 | 56
46
15
55 | 0 0 0 | 0 0 19 0 | 1 1 1 | 56
46
56
55 | 133850
128250
152525
141200 | 27440
30592
32376
34608 | 1727.1
1532.1
1804.8
1647.8 | 354°1
365°5
383°1
403°9 | 16.0
17.5
16.0
16.1 | | | | | | | | Ra | stboun | d - Iar | amie to | o Sher | man - 1 | 25.9 Miles | | | | | | 1000 4007
0ctober 11
12
13 | 67
54
62
55 | 1 4 4 11 | 1 | 3571
4114
3722
4376 | 92°49
106°55
96°40
113°34 | 1 1 2 2 | 16
9
19 | 0 | 0 0 0 | 1 1 1 | 4
16
9
39 | 94962
95063
94581
104075 | 21040
21296
17472
20416 | 1026.7
892.2
981.1
918.3 | 227°5
199°9
181°2
180°1 | 24°3
20°4
22°5
19°7 | | 1000 4010
October 23
24
25
26 | 56
67
57 | 30
1
7
12 | 1 1 1 | 4054
3548
3532
4491 | 105.00
91.89
91.48
116.32 | 1 1 1 1 | 12
7
3
19 | 0000 | 0.00 | 1 1 1 1 | 12
7
3 | 103450
85600
79537
97069 | 21768
18584
16464
28352 | 985.2
931.5
869.4
834.5 | 207.3
202.2
180.0
243.7 | 21.6
23.2
24.7
19.7 | ^{*} Helper 5035 - Max. Tractive Force 70450 Lbs. ^{** 54} Loads, 17 E. 2965 Tons to Otto 54 Loads, 8 E. 2714 Tons Otto to Sherman 2832 Tons is average for trip Cheyenne to Sherman | ns of RTU's
ed by EvapoReating
Per Hro Running Time | |---| | | | 81.75
84.67
90.92
91.29 | | 83°56
84°78
92°70
86°36 | | | | .04°57
87°63
96°34
92°63 | | .01.31
90.04
89.20
86.66 | | | | 4 | | AND ADDRESS OF THE REAL PROPERTY. | | | AND A COPY OF THE PROPERTY FOR THE PROPERTY AND A COPY OF THE PROPERTY | | | | And the second s | | | | | Process of the control of | |---|----------------------------------|-----------------------------------|------------------------------|------------------------------
---|------------------------------|----------------------------------|----------------------------------|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--| | | 0146970 | Pressure . | - Pounds I | er Square Inc | h Gauge | | | Tempera | tures - Deg | rees Fahrenheit | | | | | | DATE
1948 | Boiler | Valve
Chamber | Exhaust
Stand | Exhaust In
Injector | Injector Live
Steam Nozzle | Tank
Water | Delivery | Steam To
Right | Cylinder
Left | Exi
Right Back | last Steam
Last Back | Front Engine | Smoke Bo | ox Gases
Left | | | , ,, | | | × | Westb | ound - 0 | heyenne to | Sherman - | 30.9 Miles | | | | | | | 1000 4007
0etober 10
12
13
14 | 286.2
290.6
292.2
288.9 | 271.9
273.9
277.0
273.0 | 12.9
17.5
17.0
17.8 | 10.1
15.4
15.2
13.6 | 271.3
275.8
277.1
272.7 | 57°4
59°3
59°0
63°0 | 227.6
240.5
234.8
227.7 | 664.2
706.2
704.8
677.2 | 654.2
679.4
683.4
679.4 | 314°3
338°9
342°5
331°8 | 331.4
352.3
361.1
350.4 | 322.8
354.0
364.5
359.8 | 651.9
679.3
675.6
672.1 | 665.4
678.4
677.9
683.9 | | 1000 4010
October 23
24
25
26 | 298.4
301.7
302.1
300.7 | 286.8
289.3
288.9
287.3 | 13.1
13.6
12.9
12.9 | 8.7
9.9
10.1
9.0 | 276.0
278.9
280.0
277.8 | 56.6
63.0
55.3
58.6 | 235°2
240°1
252°1
236°1 | 725.6
733.4
740.0
723.6 | 697.4
704.1
700.2
701.3 | 366.3
364.4
364.9
363.9 | 353.7
348.1
356.1
349.4 | 363.2
364.5
362.2
367.0 | 731.9
735.6
724.6
724.5 | 735 · 1
738 · 8
707 · 8
735 · 1 | | | | | | | Eastb | ound - I | áramie To Sl | herman - 2 | 5.9 Miles | | | | | | | 1000 4007
06tober 11
12
13
14 | 298°2
289°3
298°2
298°2 | 270.9
272.2
284.2
283.2 | 16.2
17.8
16.2
16.2 | 13.9
15.8
13.1
13.5 | 281.1
273.8
281.2
281.0 | 58.0
63.2
61.1
60.0 | 230°3
231°8
225°5
224°4 | 666°1
693°2
684°0
693°7 | 661.8
677.2
672.3
675.8 | 309.6
331.8
304.5
330.3 | 323.5
353.5
324.8
343.2 | 320.7
353.5
327.2
348.5 | 658.6
665.8
665.5
683.2 | 672.1
683.5
678.4
676.9 | | 1000 4010
0stober 23
24
25
26 | 294°9
296°0
299°3
299°2 | 281.4
283.9
288.7
287.8 | 15.6
12.3
12.9
12.6 | 11.3
8.7
8.9
9.6 | 272°2
274°5
276°3
277°2 | 53.8
56.9
53.7
55.4 | 240.3
243.4
244.0
238.6 | 744.5
726.6
749.0
731.9 | 715.2
687.2
711.1
706.8 | 384.1
342.4
350.2
358.5 | 376.8
326.1
339.9
347.3 | 382.4
335.5
340.4
358.2 | 737.0
726.9
734.1
719.9 | 754.0
713.9
736.2
740.8 | | | | | | | | | | | | | | | | | # EVAPORATION AND TEMPERATURE RISE DUE TO EXHAUST STEAM CONDENSED BY EXHAUST STEAM INJECTOR TABLE IV | DATE
1948 | Running
Time
Hours | | s of Tank War
To Boiler
Live Steam
Operation | Total Tank
Water | Condensate
Return
Pounds | Total Pounds Water Evaporated By Boiler Actual | Tempo Rise
Due To
Exhaust Steam
Degrees Fo | Percent
Return | Millions Of BTUs Absorbed By Evaporative Reating Surface | |---|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------|--|---|------------------------------|--| | | | | | Westb | ound - Cheyenne | To Sherman - 30.9 Mile | | | | | 1000 4007
0etober 10
12
13
14 | 2.1167
1.9000
2.4667
2.1333 | 130394
104727
174402
148294 | 16868
32448
16998
18306 | 147262
137175
191400
166600 | 9289
8524
15353
11616 | 156551
145699
206753
178216 | 63.61
63.10
82.78
71.30 | 5°93
5°85
7°43
6°52 | 173.04
160.87
224.26
194.75 | | 1000 4010
0stober 23
24
25
26 | 1.9333
1.7667
1.9333
1.9167 | 125379
125436
142670
138849 | 8471
2814
9855
2351 | 133850
128250
152525
141200 | 9930
9786
14210
10680 | 147780
138042
166735
151880 | 76.95
78.75
96.57
78.34 | 6.91
7.09
8.52
7.03 | 161.55
149.79
179.22
165.53 | | | | | | Eastbo | ound - Laramie : | To Sherman - 25.9 Miles | | | | | 1000 4007
Ostober 11
12
13
14 | 1.0667
1.2667
1.1500
1.3167 | 87547
91818
90241
99966 | 7415
3245
4340
4109 | 94962
95063
94581
104075 | 7151
7755
6773
7672 | 102113
102818
101354
111747 | 76.29
83.65
72.54
75.60 | 7.00
7.54
6.68
6.87 | 111.55
111.00
110.79
121.97 | | 1000 4010
0stober 23
24
25
26 | 1.2000
1.1167
1.0500
1.3167 | 98622
81868
71114
96359 | 4828
3932
8423
710 | 103450
85600
79537
97069 | 9590
7204
6555
7977 | 113040
92804
86092
105046 | 97°33
86°29
85°10
85°07 | 8.48
7.76
7.61
7.59 | 121.57
100.54
93.66
114.10 | | DATE
1948 | Hours Injector
Operates On
Exhaust Live
Steam Steam | Tank Water Delive
Exhaust Liv
Steam Stea
Operation Operat | e Runn
m Ti | e To | d
Tank | Pounds Live
Steam Used By
Injector Exho
Steam Opero | | Pounds
Exhaust
Steam
Condensed | Total Lbs
Water Fed
To
Boiler | Cond. Return
% Total
Water To
Boiler | Net Tempo
Rise Due To
Exho Steam
Condensed |
% Cond.
Return Exh.
Steam
Operation | Temp.Rise Due
To Exh.Steam
Condensed On
Exh.Operation | |---|--|--|--|--|------------------------------|--|--------------------------|---|--|---|---|--|--| | | | | | Westbo | und - Che | yenne To Sher | man - 30.9 M | iles | | | | | | | 1000 4007
October 10
12
13
14 | 2.0117 0.2667
1.6122 0.4917
2.3128 0.2355
1.9536 0.3528 | 130394 1686
104727 3244
174402 1699
148294 1830 | 8 147262 2.11
8 137175 1.90
8 191400 2.46
6 166600 2.13 | 0 240.5 | 57°4
59°3
59°0
63°0 | 12855
10573
15234
12675 | 842
779
981
879 | 9289
8524
15353
11616 | 156551
145699
206753
178216 | 5.93
5.85
7.43
6.52 | 63.61
63.10
82.78
71.30 | 6.65
7.53
8.09
7.26 | 72.12
83.06
90.75
80.40 | | 1000 4010
0ctober 23
24
25
26 | 1.6411 0.1436
1.6367 0.0353
1.8583 0.1164
1.8325 0.0314 | 125379 847
125436 281
142670 985
138849 235 | 1 133850 1.93
4 128250 1.76
5 152525 1.93
1 141200 1.91 | 235.2
7 240.1
3 252.1
7 236.1 | 56.6
63.0
55.3
58.6 | 12413
12501
14248
13945 | 687
648
766
719 | 9930
9786
14210
10680 | 147780
138042
166735
151880 | 6.91
7.09
8.52
7.03 | 76°95
78°75
96°57
78°34 | 7.34
7.24
9.06
7.14 | 82.25
80.50
102.97
79.66 | | | | | | Eastbo | und - Lai | ramie to Sherm | an - 25.9 mi | les | | | | | | | LOGO 4007
October 11
12
13
14 | 1.1933 0.1411
1.1792 0.0425
1.2011 0.0717
1.2914 0.0664 | 87547 741
91818 324
90241 434
99966 416 | 5 94962 1.06
5 95063 1.26
0 94581 1.15
9 104075 1.31 | 7 231.8
0 225.5 | 58.0
63.2
61.1
60.0 | 7968
7680
8022
8619 | 507
475
489
526 | 7151
7755
6773
7672 | 102113
102818
101354
111747 | 7.00
7.54
6.68
6.87 | 76.29
83.65
72.54
75.60 | 7.55
7.79
6.98
7.13 | 82.93
86.5 7
76.13
78.80 | | 1000 4010
October 23
24
25
26 | 1.1695 0.0608
1.0947 0.0539
0.9297 0.1094
1.2797 0.0103 | 98622 488
81868 393
71114 842
96359 71 | 8 103450 1.20
2 85600 1.11
3 79537 1.05
0 97069 1.31 | 7 243.4 244.0 | 53.8
56.9
53.7
55.4 | 8733
8238
7040
9719 | 489
436
402
497 | 9590
7204
6555
7977 | 113040
92804
86092
105046 | 8.48
7.76
7.61
7.59 | 97°33
86°29
85°10
85°07 | 8.86
8.09
8.44
7.65 | 101.93
90.18
94.96
85.69 | | DATE
1948 | Boiler Presso
Pounds Per
Sq. Inch
Gauge | Sq. Inch Temp. Steam | | | Running By Evap. Heating Surface Per Nour
Time If Fed By Live
Hours Actual Steam Injector | | | Heat Absor | From Firing Rate
rption Curve
If Fed Ry Live
Steam Injector | Coal Rate
Difference
Pounds Per
Hour | Pounds Goal
Saved Per
Trip By Exh.
Steam Injector | | | | | |---|--|--|---|--------------------------------------|---|-----------------------------------|------------------------------------|----------------------------------|--|---|--|--|--|--|--| | | | Westbound - Cheyenne To Sherman - 30.9 Miles | | | | | | | | | | | | | | | 1000 4007
October 10
12
13
14 | 286°2
290°6
292°2
288°9 | 57°4
59°3
59°0
63°0 | 63.61
63.10
82.78
71.30 | 156551
145699
206753
178216 | 2°1167
1°9000
2°4667
2°1333 | 81.75
84.67
90.92
91.29 | 86.45
89.51
97.86
97.25 | 15318
16168
17885
18000 | 16613
17458
19817
19643 | 1295
1290
1932
1643 | 2741
2451
4766
35°5 | | | | | | 1000 4010
October 23
24
25
26 | 298.4
301.7
302.1
300.7 | 56.6
63.0
55.3
58.6 | 76°95
78°75
96°57
78°34 | 147780
138042
166735
151880 | 1.9333
1.7667
1.9333
1.9167 | 83.56
84.78
92.70
86.36 | 89.45
90.93
101.03
92.57 | 15140
15445
17375
15840 | 16583
16598
19603
17343 | 1443
1153
2228
1503 | 2790
2037
4307
2881 | | | | | | | | _ | Eastbound - Laramie To Sherman - 25.9 Miles | | | | | | | | | | | | | | 1000 4007
0ctober 11
12
13
14 | 298°2
289°3
298°2
298°2 | 58.0
63.2
61.1
60.0 | 76.29
83.65
72.54
75.60 | 102113
102818
101354
111747 | 1.0667
1.2667
1.1500
1.3167 | 104.57
87.63
96.34
92.63 | 111.88
94.43
102.73
99.02 | 21667
16953
19383
18342 | 24000
18842
21147
20141 | 2333
1889
1764
1799 | 2488
2393
2029
2369 | | | | | | 1000 4010
0stober 23
24
25
26 | 294°9
296°0
299°3
299°2 | 53.8
56.9
53.7
55.4 | 97°33
86°29
85°10
85°07 | 113040
92804
86092
105046 | 1.2000
1.1167
1.0500
1.3167 | 101.31
90.04
89.20
86.66 | 110.48
97.21
96.18
93.45 | 19528
16724
16524
15915 | 22141
18503
18245
17563 | 2613
1779
1721
1648 | 3136
1987
1807
2170 | | | | | ## AVERAGE WATER RATES AND INDICATED HORSEPOWER | DATE
1948 | Exhaust
Press.
PSI
Gauge
P1 | t Stand
Temp.
Degrees
F | Valve C
Press.
PSI
Gauge | Temp. Degrees | | chaust Sta
Specific
Voluma | end
Enthalpy
H ₁ | After Add
Press.
P2
PSI
Absolute | abatic E
Specific
Volume
V2 | kpan From
Enthalpy
H2 | P ₁ to P ₂
Jee
Velocity
Pt. Per
Sec. V ₂ | Pounds S
Per No
Through
Exhaust
Nozzle Wy | To
Engines | Steam | Velocity Of Steam In Exhaust Pipes Ft/Sec | Gorrection For Rad. & Velocity of Steam in Exh. Pipes BTU per Lb | lbs.Steam
per Ind.
Horse-
power
. Hour | Indicated Horse- power | |--|---|----------------------------------|-----------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---|---|----------------------------------|--|---|--|--|------------------------------| | Westbound - Cheyenne to Sherman - 30.9 Miles | 1000 4007
0stober 10
12
13
14 | 12.9
17.5
17.0
17.8 | 327.1
348.4
356.0
347.3 | 271.9
273.9
277.0
273.0 | 659.2
692.8
694.1
678.3 | 1.7674
1.7614
1.7677
1.7596 | 17.864
15.572
15.987
15.395 | 1202.8
1212.2
1216.0
1211.6 | 15.0
17.7
17.4
17.9 | 27.03
23.54
24.18
23.27 | 1159.2
1167.6
1170.7
1167.6 | 1481.8
1498.3
1510.0
1488.1 | 60034
67578
66139
67997 | 64567
73411
72310
73639 | 1346.6
1364.6
1359.7
1356.8 | 104.9
102.9
103.4
102.4 | 1.9857
1.7647
1.7903
1.7578 | 17.95
16.89
17.93
17.75 | 3597
4346
4033
4149 | | 1000 4010
0etober 23
24
25
26 | 13.1
13.6
12.9
12.9 | 361°1
359°3
361°1
360°1 | 268.8
289.3
288.9
287.3 | 711.5
718.8
720.1
712.5 | 1.7866
1.7834
1.7875
1.7870 | 18.529
18.139
18.674
18.650 | 1219.0
1218.1
1219.0
1218.5 | 15°1
15°4
15°0
15°0 | 28.05
27.47
28.25
28.22 | 1173.2
1172.5
1173.4
1173.0 | 1520.2
1516.9
1516.9
1515.1 | 74101
75503
73418
73404 | 80323
81750
81171
79386 | 1374°1
1377°9
1378°8
1374°6 | 134.4
134.0
134.2
134.0 | 1.7803
1.7536
1.7646
1.7951 | 16.60
16.10
16.10
16.49 | 4839
5078
5042
4814 | | Eastbound - Iaramie To Sherman-25.9 Miles | LOGO 4007
Cetober 11
12
13
14 | 16.2
17:8
16.2
16.2 | 317°9
346°3
318°8
340°7 | 270.9
272.2
284.2
283.2 | 664.0
685.2
678.2
684.8 | 1.7478
1.7590
1.7483
1.7613 | 15.622
15.374
15.641
16.108 | 1197.8
1211.1
1198.2
1208.7 | 16.9
17.9
16.9
16.9 | 23.68
23.21
23.70
24.37 | 1154.6
1166.7
1154.9
1164.0 | 1474.6
1495.0
1476.2
1499.9 | 65691
68489
65 7 06
64926 | 71377
74622
70932
70210 | 1349 · 3
1360 · 6
1350 · 7
1359 · 7 | 100-4
103-0
100-5
102-3 | 1.7988
1.7399
1.8093
1.8330 | 17.00
17.22
16.89
17.06 | 4199
4333
4200
4115 | | 1000 4010
0etober 23
24
25
26 | 15.6
12.3
12.9
12.6 |
381.1
334.7
343.5
354.7 | 281.4
283.9
288.7
287.8 | 729°9
706°9
730°1
719°4 | 1.7876
1.7747
1.7772
1.7851 | 17.324
18.483
18.256
18.746 | 1228°1
1206°6
1210°7
1216°1 | 16.6
14.7
15.0
14.8 | 26.19
27.91
27.62
28.41 | 1181.4
1162.6
1166.0
1170.6 | 1535.0
1490.1
1501.9
1515.1 | 80139
72999
74350
72918 | 88397
79810
81615
79321 | 1384°2
1371°7
1384°1
1378°4 | 135.9
132.0
132.8
133.8 | 1.6590
1.7770
1.7495
1.7950 | 16.48
15.58
14.83
15.86 | 5364
5123
5503
5001 |