External and Internal Features Of UP Locomotives

Index For This Page

This page was last updated on July 17, 2024.

(Return to UP Diesel Locomotive Index Page)

(Listed alphabetically.)

Air Horns

The first GP7s, numbered UP 700-709, delivered in February and March 1953, had their horns mounted near the rear exhaust stack (long hood forward).

Photos of UP's fleet of GP9s when they were new show that their air horns were originally located at the top of the cab roof, at the centerline of the locomotive.

In the mid 1960s, UP began changing the horn location from the cab roof, to above the radiator fans. The new location was meant to alleviate the problem of horns not operating properly due to buildup of ice and snow. In a series of engineering drawings dated May 1963, the 1-30 series GTE locomotives, the GP7s and GP9s, the GP20s, the GP30s, and the SD24s, and the Alco DL-640s, were all the subject of drawings showing new air horn locations to prevent freezing. (ST 8086, 8088, 8091, 8099, 8105, 8106, 8108)

The first new units with the new horn location were the 22 GP35s, UP 740-761, delivered in May and June 1964. However, the GE U50s, also delivered in 1964, came with cab-mounted air horns. New DDA35 units delivered in 1965 had rear-mounted horns, as did the SDP35 units also delivered in 1965.

All subsequent locomotive deliveries after mid 1964, and until early 1978, had their air horns at the rear, mounted above the radiator fans. Locomotives built before 1964 were modified to match the new standard by installing a new horn bracket and running an air line (usually 1/2-inch copper) from the former location, along the roof to the new location.

Beginning in 1978, new units were delivered with their horns mounted on the cab roof. The location above the radiators became a problem after studies in 1977 found that the rear mounting location reduced the horns' effectiveness, with the locomotive body and obstructions along the roof deflecting and masking some of the sound waves. In-service units received the change over the following years, as scheduled maintenance took place.

For new locomotives delivered in the 1972-1974 time period (especially the SD40-2s and GP38-2s), the air supply line was installed along the locomotive frame from the area under the cab floor, back to the rear of the locomotive, where a vertical pipe was installed to the roof, adjacent to the sand fill, with a supply line mounted to reach the horn location between the radiator fans (this can be seen in photos).

After the 1978 official change of horn location, the air supply line was extended along the roof on the right side of the radiator fans and dynamic braking fans, to the new location on the cab roof. Relocated air horns were mounted to a raised bracket on the cab roof. Units delivered after the 1978 change had their air horns mounted lower and closer to the surface of the cab roof.

Moving the air horns from the rear of the units, to the cab roof by installing an extended air line along the roof was soon found to be both redundant and expensive. The modification program was changed to retire-in-place the existing air horn supply line, and install a new line from under the cab floor, up through the electrical cabinet to the cab roof. This is seen most notably on SD40-2s and GP38-2s, on units with cab-mounted air horns, along with an unused bracket between the radiator fans, and the short air supply line from the unused bracket back to the rear of the unit's roof. Photos show a wide variety of locomotives of these two types, with variations of the rooftop external air lines. As a general statement, SD40-2s in the 3100, 3200 and 3300 series, and the 60 GP38-2s in the 2000-2059 series, were delivered with rear mounted air horns, and later received external rooftop air lines, although many also show the retired-in-place bracket and short supply line only at the rear. SD40-2s numbered higher than the 3420-series were delivered with cab mounted air horns, which can easily be seen by the fact that their air horns are mounted low to the cab roof.

Photo research suggests that the changeover for new units came in March 1978, with the delivery of SD40-2s 3410-3488. A photo of three new SD40-2 units on page 160 of George Cockle's Union Pacific 1977-1980, shows UP 3414 and 3415 with their horns back among the radiator fans, and UP 3416 with the horn in the new location on the cab roof. For approximately 15 units, the change order came too late for EMD to re-design the internal piping that furnished air to the rear location. As an interim fix for approximately 15 units delivered in March and April 1978, EMD put a large air supply line along the entire length of the roof, from the rear location to the new location on the cab roof. (UP's six GP40Xs, numbered as UP 9000-9005, were delivered in March 1978, with their air horns mounted above the radiators.)

UP's first order of 15 C30-7s, 2960-2974, were delivered between July and September 1977. As delivered, these first C30-7s had their horn located on the left side of the forward section of the radiator housing. Within a year the horns on other GE units were relocated to a position just behind the operator cab to maximize the forward projection of sound. The second C30-7 order, UP 2415-2429, were delivered in June and July 1978, with their horns mounted on the roof immediately behind the cab.

"UP used to have the Leslie S-3L on everything, but in recent years they have been buying the Nathan (AirChime) K-3HA. This is what the SD9043MAC's were delivered with. Last year, I believe UP announced they were switching to the K-3HA exclusively due to complaints about how lousy their horns sounded (the Leslies don't stand up well to the abuse of button-controlled horn valves)." (Posted by Evan Werkema on Trainorders.com, February 2, 2000)

Air Sirens

UP internal documents show that the siren used on all of the installations shown below was a Federal Signal Thunderbolt 1003, with a modified (flattened) projector horn.

The following five locomotives are known to have had air sirens installed:

August 6, 1975
UP 3049 was equipped with an electronic siren. The following comes from UP Eastern District Bulletin A-300, dated August 6, 1975:

Unit 3049 has been equipped with an electronic siren on a test basis. This siren is to be used as an emergency vehicle only and in no way alters the requirements on use of the regular horn. The operator has a selection of three sounds: WAIL, YELP or HIGH-LOW and may be used individually or in a series. It is intended that the siren be sounded approaching and passing gangs or workmen on or near the track and is not intended to be used in cities, towns , municipalities or grade crossings except in emergency.

January 1976
UP SD40 3049 was involved in test program to use air raid-type for sirens to better alert track crews. (CTC Board, January 1976, page 8)

May 1978
UP SDP35 1402 was equipped with air raid-type siren, made by Federal Signal, to increase alertness of track maintenance crews. SDP35 1400 also equipped with same design. (Pacific News, May 1978, page 16; Pacific News, August 1978, page 15)

(see photo of UP 1402 on page 114 of George Cockle's book Union Pacific 1977-1980, published in 1980)

UP's engineering department produced an engineering drawing that showed the application of the "Warning Siren" on SDP35 1400-1407. The drawing, number 264-ST-9753, was initially dated April 10, 1978, and was revised on May 9, 1978 to incorporate the needed changes discovered after the initial application of a warning siren on UP 1402.

As part of the same tests in May 1978 to improve warning devices for track crews, UP SDP35 1408 was equipped with two air horns mounted on its cab roof, in addition to the single horn mounted above the radiator fans, making for a total of three air horns on the unit: a Leslie S5T, a Leslie S3T, and a Nathan K5.

January 1979
Siren was removed from UP SDP35 1402. (Pacific News, January 1979, page 14)

March 1979
Air raid type sirens have been removed from SDP35s 1400 and 1402. They will be reinstalled on 6900s. The first to get them was 6918. (Pacific News, March 1979, page 16)

May 1979
Air raid siren from SDP35 1400 has been installed on 6924. (CTC Board, May 1979, page 8; Pacific News, May 1979, page 22)

October 26, 1980
The following comes from Union Pacific System Timetable No. 4, October 26, 1980, Special Rule 1092, page 149:

Siren installed on unit 1400 operated by a single throw toggle switch, siren on unit 1402 operated by a single push button and sirens on units 6918 and 6924 operated by a single slide pole switch. On all units so installed switches are on the instrument panel in front of the engineer labeled "Siren."

It is intended this siren be sounded for an emergency only when approaching and passing gangs or workmen who have not noticed or heard regular horn warning. Sirens are not intended to be used in cities, towns, municipalities or at grade crossings, except in emergencies.

When sirens are used in an emergency situation, radio report of the incident should be made by engineer to dispatcher giving all necessary details.

(This rule first appeared in System Timetable No. 3, dated March 9, 1980, and remained in System Timetable No. 7, dated July 17, 1983. The siren rule was *not* in System Timetable No. 8, dated November 20, 1983.)

Photos of both UP 6918 and 6924 show that both units retained their sirens while in storage at various locations beginning in May 1980, including their time at Yermo, California, beginning in January 1982. UP 6918 had its siren removed by July 1984; UP 6924 still had its siren as late as April 1984. Both units were retired in May 1985.

Automatic Cab Signals

A note on terminology:

Union Pacific's ACS/CCS system used a design from Union Switch & Signal which first became available in the mid 1920s, and which was first installed in its earliest forms on Pennsylvania Railroad in 1923 and 1926. ACS/CCS uses a four-light cab signal and locomotive-mounted induction receivers that sense a pulse code that is fed into the track itself.

In 1949, Union Pacific first added Automatic Cab Signals as part of a general improvement of traffic control along the railroad's Oregon-Washington Railroad & Navigation Co., mainline between The Dalles and East Portland, via Graham (85.3 miles). The system was used in conjunction with Automatic Block Signals to improve the flow and control of traffic by installing duplicating signal indicators inside the locomotive cabs, with an acknowledging action required from the engineer upon receiving a more restrictive signal indication. The greatest advantage of the ACS system was that it allowed trains to operate at maximum speed in inclement weather, without concern of visibility of trackside signals. This was on what was known as the Oregon Fourth Subdivision.

UP has ACS on the Portland Sub between Crates, the west end of double track at The Dalles, through to Troutdale. As of September 2017, ACS/CTC is still in effect on the Graham Line between Troutdale and East Portland. (Joal Ashcroft, email dated September 25, 2017)

In January 1950, UP's engineering department issued a drawing showing the installation of four-indication light boxes in the cabs of the Alco freight units, running on the former LA&SL west of Salt Lake City. In February and April, a drawing was issued covering all of the railroad's diesel passenger units, showing the wiring changes needed to use four-indication light boxes on locomotives with three-indication light systems.

ACS was installed along the Nebraska and Wyoming mainlines, west into Ogden, Utah, after a terrible accident at Wyuta, Wyoming, on November 12, 1951, where one of UP's Streamliner passenger trains ran into the rear of another Streamliner train. Train 104, the City of San Francisco traveling at 77mph, rear-ended Train 102, the City of Los Angeles. Train 102 had just started to move again after stopping at a signal light that had become obscured by snow and ice. (see also: Railway Age, Volume 131, November 19, 1951, page 13)

May 1972
The following comes from the May 1972 issue of Railroad magazine, page 59:

How Cab Signals Work

UNION PACIFIC acquired, in February, 70 sets of type EL coded cab signal equipment from Westinghouse Air Brake Co. for installation on new locos. This consists of a small signal unit mounted at the engineer's eye level, plus sensor equipment ahead of the front wheels. It provides a continuous indication of track conditions ahead. To inform readers interested in modern cab signaling, this explanation comes from R. J. Casey of WABCO:

Continuous cab signals are operated by processed data received from the coded alternating current transmitted down the rails towards the train. By means of receivers mounted ahead of the leading wheels, the coded signal is picked up and converted into a visual signal on a small display panel in the driver's cab.

Codes are obtained by varying the pulses of alternating current by means of relay contacts and are measured in terms of the number of pulses per minute. A clear wayside signal indication is equivalent to 270 pulses per minute and shows a green light on the cab signal. Three degrees of speed reduction, signaled by illuminated signs on the display panel, are triggered by 180, 120, or 75 pulses per minute, depending on the number of clear track sections ahead. A stop indication is ordered when no pulses are received.

When the change is to a more restrictive signal, an audible warning signal sounds in the locomotive. Fail-safe reliability is ensured by the inherent design of equipment and circuits. Any malfunction automatically produces the most restrictive indication. Engine carried apparatus responds uniquely to pre-established code frequencies- providing immunity from foreign current.

Voltages of the same frequency and code rate, are induced into the receiver coils on the locomotive and after amplification, are used to operate a master relay. This relay governs four decoding units that are selectively operated. The associated decoding relays in turn control the cab signals and the warning bell.

Intermittent cab signals are actuated through a pair of coils placed along the track rather than by the transmission of current through the rails. Various aspects of wayside signals are connected to condensers that tune the coils to the required number of frequencies. Frequency emissions are detected by locomotive mounted receiver coils as the train passes over trackside coils.

Trackside installation consists of a high and low frequency coil while a corresponding pair of wide band amplifiers are mounted on the locomotive. Amplifier oscillations are measured by low and high frequency detectors that pass the corresponding steady signals to the logical circuitry. Circuitry is equipped with fail-safe solid state components that compute the incoming signals and trigger the various signals within the cab and, in certain circumstances, set off operation of train control equipment. Use of high and low frequency coils permit transmission of a broader combination of track condition information.

As of March 2000, UP had ACS in the following locations:


Available company locomotive rosters for 1968 through 1976 shows that 11 GP9s has CCS: UP 138, 190, 234, 236, 240, 266, 286, 290, 291, 298, 299.

The lists for 1977 to 1980 showed the locomotive features as notes, showing that the following units had CCS: DDA35 70-84; SD24 400-429; GP20 470-499; GP30 700-735; GP35 745-763; GP30 800-875; the remaining E8/E9 928, 952, 954, 960; SDP35 1400-1409; GP38-2 2000-2059; U28C 2800-2809; U30C 2810-2959; SD40 3000-3122; SD40-2 3123-3399; SD45 3600-3649; DDA40X 6900-6946; SD40-2 8000-8064. Note that no GP9s were listed in the 1977-1980 period, and neither were the U50Cs 5000-5039.

Automatic Train Stop (AT&SF)

"UP E units were equipped with Coded Cab Signals (CCS) for the Overland Route main line. The pickup bar was located under the pilots. The ATSF between Daggett and Riverside was equipped with a different system, Automatic Train Stop (ATS), in order to comply with FRA requirements to exceed 79 mph running between Victorville and Barstow. Some UP E8's and E9's appear to have a Santa Fe style ATS pickup shoe on the right side of their 5th axle." (Olin Dirks, email dated September 17,2009)

According to Wikipedia, the federal Interstate Commerce Commission required ATS after 1951 as a minimum safety requirement to allow passenger trains to exceed a speed limit of 79 mph. The ICC decision followed the terrible wreck at Naperville, Illinois, on April 25, 1946, in which a CB&Q passenger train traveling at 85 mph ran into another CB&Q passenger train that had stopped due to a mechanical problem. The regulatory requirement refers to a system that triggers an alert in the cab of the locomotive whenever the train passes a restrictive wayside signal and that then requires the locomotive engineer to respond to the alert within a set period of time before the brakes are automatically applied. The most popular implementation of ATS for the mainline railroad industry was made by the General Railway Signal company starting in the 1920s and consisted of inductive coils mounted just outside the right hand rail in relation to the direction of travel. Often referred to as just ATS in railroad operating books, the full name of the system is Intermittent Inductive Automatic Train Stop to differentiate it from mechanical systems being offered at the time. AT&SF installed ATS along its Chicago to Los Angeles route at points where train speeds exceeded the 79 mph requirement.

According to an internal company roster dated September 1, 1968, all of UP's E9s (UP 900-914, 943-961) and all of their E8s (UP 925-942) were equipped with ATS.

I don't have anything from earlier times, but it is likely that only certain units had ATS, and by the late 1960s, all potential lead units had been modified.

Automatic Train Control (C&NW)

Coded Cab Signal (CCS) is the Union Pacific's cab signal system and is used on the UP west of Council Bluffs. It is similar to ATC, but with several differences. Wayside signals exist in CCS territory. The CCS cab indicator has four aspects (clear, advance approach, approach and restrictive) as compared to ATC's two. And CCS track signals are coded using different frequencies, whereas ATC's track signal is non-coded. Using CCS equipment from UP SD45s retired in 1981 and 1982, C&NW GP50 5063 was first equipped with CCS on top of ATC on a test basis in 1983. Dual ATC-CCS applications were later extended to all GP50s (equipment later transferred to 48 SD40-2s), all SD50s, 31 of the SD60s, and almost all of C&NW's GE locomotives. The presence of dual ATC-CCS permits C&NW locomotives to lead trains over both the C&NW and Union Pacific east-west main lines.

'B' Prefix SD40-2s

The 'B' series numbers first started showing up in February 1992, applied to UP-owned units that were in need of heavy maintenance, but which could still be used only as trailing units, and renumbered with 'B' prefix. The former MP units were all without dynamic braking, a feature that Union Pacific wanted for all road units because it made overall train handling much more efficient. So by summer 1992, UP decided that the former MP units were still usable in limited service, but only as trailing units.

In February, March and April 1992, a total of 15 UP-owned SD40-2s (UP 3266, 3332, 3339, 3431, 3455, 3534, 3550, 3556, 3575, 3635, 3640, 3641, 3664, 3783, 3786) were all placed in trailing-unit-service only, by removal of cab signals, refrigerator, toilet, and cab seats. These UP-owned units were run through the shops for their needed heavy maintenance and were returned to normal service in the 1995-1998 time period.

In June through December 1992, a total of 89 former MP SD40-2s were all placed in trailing-unit-only status by removal of refrigerators, toilets, and cab seats, and renumbered with 'B' prefix. The numbers included UP 4116, 4117, 4118, 4121, 4122, 4124, 4125, 4127, 4128, 4133, 4134, 4136, 4142, 4144, 4145, 4163, 4205, 4207, and 70 units in the 4216-4321 series.

The serviceable UP-owned units were renumbered back to their original numbers in 1995-1997. A few of the former MP units were rebuilt and returned to regular service in 1997-1998. Between 2000 and 2002, those former MP units with the 'B' series numbers that were still serviceable were renumbered in the 8945-8999 series, but most were retired soon after due to the arrival of new SD70s.

Cab Unit Right Side Hand Holds

Beginning in 1960, a series of hand holds were applied in a vertical row to the right side of locomotive noses on UP's EMD and Alco cab units, to allow the cleaning of front cab windows. This was in compliance with newly established rule from the federal Interstate Commerce Commission, known as Rule 232, that the railroads must provide safe access to allow cleaning and maintenance ("attention and care") of cab windows. The rule reads as follows:

232 (as revised). Each locomotive shall be provided with such classification and marker lamps as may be required by the rules of the railroad company operating the locomotive. When such lamps are used they shall be kept clean. The classification lights shall be electrically lighted and adequate head clearance shall be provided. Necessary safe and suitable steps, toe boards, handrails and/or handholds shall be provided in order to make cab windows, headlights, classification lights, marker lights, pantographs and trolleys accessible for attention and care. (The compliance date of revised rule 232 is postponed from January 1, 1959, to January 1, 1962, subject to the provision that not less than 33-1/3 percent of each railroad's locomotive units shall be brought into compliance not later than January 1, 1960, not less than 66-2/3 percent not later than January 1, 1961, and the remainder not later than January 1, 1962.)

In August 1960, Union Pacific issued an engineering drawing (396-ST-7711) covering the application of right side hand holds on the railroad's E7 passenger units. Similar drawings were likely issued at the same time covering the road's other cab units.

Canvas Cab Awnings

The canvas awnings were used until the SD40-2s delivered in 1977, and were exactly the same as the canvas awnings that Union Pacific used on their steam locomotives. In 1978, UP began using the metal sun shades. The arm rests were also the same as steam locomotive designs, 5 inches by 43-1/2 inches, changed to 41-1/2 inches length in 1974. The new GEs kept using the 43-1/2 inch arm rests until about 1978.

Classification Lights Removed

From the earliest days of diesel locomotives, most were equipped with some sort of electric classification lights, which were similar to colored flags. Each of the various models of electric classification lights included a way to change the color of the light from white (an extra movement) to green (a scheduled movement), and to red (designating end of train). A red light was more properly known as a marker light, not a classification light, since it designates the rear end of a train (or movement). Cabooses displayed red lights to the rear, as did helper locomotives when they were behind the caboose.

During the steam era, and until the late 1970s in some locations, Union Pacific used marker lamps and marker lights to display a train's classification. The use of marker lights as an operating term continued well into the 1980s. By April 1986, when System Timetable No. 3 was issued, the term "marker" had disappeared from operating rules for trains. The previous timetable, dated April 28, 1985, had only used the term marker in special rules for the California Division, when referencing the need to UP cabooses to display markers when operating over AT&SF tracks.

The locomotives for Union Pacific's early Streamliner trains used small classification "marker" lights as part of the number indicators. During the 1940s, as more and more diesel locomotives were being used for freight service, the classification lights began to be separated from the number indicators, and the classification lights grew in size. (Read more about train indicators, below)

Jack Wheelihan wrote the following on Trainorders.com on September 17, 2017:

Sometime in the early to mid 1970s, EMD stopped equipping ALL units with "class lights" as well as "flag and lamp holding brackets", as a "basic" item. Those railroads that still desired "class lights" and "flag and lamp holding brackets" then had to pay extra for such features, and most railroads no longer desired, nor used such features, ever since train classifications, such as "Extra" (white class lights), and "Second Section Following" (green class lights), were no longer used.

The General Code of Operating Rules (GCOR) was first adopted with its first edition in 1985. Except in very special circumstances, the use of classification lights is not covered in the GCOR.

"The UP adopted the General Code of Operating Rules in 1985. That first edition still had rules for movement by time table and train order (it was the only GCOR to have them) but didn't have the rules for train classification signals.  A 1986 or later order for UP wouldn't need class lights." (Jeff Hergertt writing to the Trains Forum on February 8, 2021)

"As of April 27, 1986, all of the major western lines except Kansas City Southern and Rio Grande had adopted a common General Code of Operating Rules. The simplicity of TWC (Track Warrant Control) or DTC (Direct Train Control) compared with train-order operation is well illustrated by comparing the number of pages of rules devoted to each: train-orders, 53 pages; TWC, 14 pages; DTC, 5 pages." (Trains magazine, November 1986, page 42)

In 1986, with the general adoption of the new General Code of Operating Rules, the Federal Railroad Administration sent a memo to the nation's railroads, re-stating the need for the continued maintenance of all intact equipment on railroad locomotives. By that time many of the nation's railroads had moved away from using train-orders for the authority and operation of trains, and moved to either warrant control, or direct control, both by acknowledged and repeated radio instructions. The use of classification "marker" lights was no longer required.

FRA rules for locomotive safety standards have always stated that if a device is on a locomotive, it must function as intended. With the adoption of the General Code of Operating Rules (GCOR) in the mid 1980s many of the Class 1 carriers changed their operating rule books so that time table and train order were no longer a method of dispatching trains.

With the discontinued use of classification lights, the railroads stopped maintaining the lights, and there are numerous examples of the lights being painted over when locomotives were repainted. The railroads began welding covers over the classification light location, and otherwise blanking off the location after the Federal Railroad Administration reminded the railroads that if any light was not being used, or maintained, it must be removed, to prevent violations of the rule for inoperable lights, which reads, "Failure to repair or replace non-complying alarms, lights or beacons as required."

Due to lack of regular use on UP, most of the classification lights on locomotives were inoperable, and to comply with the FRA rule about devices on locomotives, if class lights were installed on the locomotives, they must be maintained in operating condition. The most common response by many of the nation's railroads was to simply paint over the class lights, making them the same color as the background sheet metal. UP was no different with its response. It was reported in the railfan press that the first UP units to have its classifications lights painted over was GP15-1 1625, in June 1986. Later, UP began a program to actually plate over the classification light openings, with varying degrees of success in the finished appearance.

All classification lights decommissioned and painted over. FRA rules say that the railroad must maintain intact equipment; by painting over the class lights, UP does not have to maintain them any longer. (CTC Board, July 1986, page 43)

The first unit to have the class lights actually removed was UP 1625, in June 1986. (CTC Board, August 1986, page 13)

UP's last SD40-2s were delivered in 1980 with classification lights, and the Missouri Pacific SD50s were delivered in November and December 1984 without classification lights.

Commemorative Plaques

UP Shield Safety Plaques

EMD SD60Ms UP 6269-6279 (11 units) displayed UP-shield shaped bronze plaques commemorating the Service Units that won various 1990 Safety Performance Awards. Each plaque names a specific Service Unit, and its particular safety award. All were removed by the mid to late 1990s, prior to their being renumbered to their later 2400-series numbers, beginning in 2000.

(At the time, in 1989, there were a total of 24 Division Service Units, as shown in the System Timetable #7, dated October 29, 1989.)

(UP 6271, 6272, 6273, 6275, 6276 received new paint and UP's "We Will Deliver" slogans in the 1995-1996 time period, at which time their bronze plaques were removed and replaced by a standard UP multicolor shield.)

Following is a list of Service Units with the lowest safety index (i.e. fewest injuries):

The plaque on UP 6270 read as follows: "UP 6270 is dedicated to employees of San Antonio Division Service Unit who demonstrated outstanding improvement in overall safety performance in 1990."

Following is a list of Service Units with the best safety performance, as measured by FRA reportable injuries per 200,000 man hours:

GE C41-8W 9540-9555

Photos of locomotives in the 9540- and 9550-series C41-8W GE locomotives (delivered in November and December 1993) show that several wore shield-shaped safety plaques during the mid 1990s. These include UP 9540 (until about 1999), UP 9541 (until about 2000), UP 9549 (placed after May 1994 and before August 1995, removed before March 1996), UP 9550, UP 9552 (until after September 1997), UP 9554, UP 9555.

The plaque for UP 9550 read, "UP 9550 is dedicated to employees at DeSoto Car Shop Maintenance Operations who demonstrated outstanding safety performance in 1993." The plaque on UP 9550 had been removed by 1995, and as of 2021 is displayed in a restaurant in Port Orchard, Washington.

The plaque for UP 9555 read, "UP 9555 is dedicated to employees of Utah Locomotive Shop Maintenance Operations who demonstrated outstanding improvement in overall safety performance in 1993." Photographed in December 1995; plaque removed by April 1996.

The few dated photos show that these locomotives received their plaques during late 1994 or early 1995, and that the plaques were removed by the 1996-1997 time period.

Photos of UP 9542-9548, 9551, and 9553 during the mid 1990s show that they did not receive plaques.

GE C44-9W 9700-9709

UP 9700 (GE C44-9W) had a shield-shaped plaque commemorating the safety of the Cheyenne Service Unit in 1994.

UP 9702, 9704, 9705, 9706, 9707, and 9709 (GE C44-9W, delivered new in July 1994) have been reported as also having UP shield-shaped plaques.

The plaques on UP 9704 and 9706 had been removed by the time of photos taken in August 2002, and April 2007, respectively.

Photos of UP 9707 taken in 1998 to 2014, when it was repainted, show a plaque on both sides of its nose.

A photos of UP 9709 taken in May 2007 and again in June 2008 show its plaque up-close. It reads, "UP 9709 Is Dedicated To Employees Of Track Maintenance Stockton To Salt Lake City Who Demonstrated Outstanding Safety Performance In 1994". Photos as late as July 2014 show UP 9709 with its plaque still intact.

Photos of UP 9700, 9701, 9703, 9705, 9708 taken in the late 1990s or early 2000s show them without any plaque, or evidence of a plaque.

J. C. Kenefick Safety Award

Since its inception in 1986, the award, named for former Union Pacific Chairman and CEO John C. Kenefick, honors employees who have demonstrated outstanding on-the-job safety achievements.

The J. C. Kenefick Safety Award plaques were large rectangular plaques mounted to the engineer side (or both sides) of the nose of the locomotives.

UP 5287 (GE C45AC), built in 2006, has been photographed in 2022 with a plaque on its engineer's side. Photos as early as 2006 show the locomotive without the plaque, but photos in 2011 show the plaque mounted to the engineer's side. All photos of the fireman's side show that the plaque is only on the engineer's side. A photo taken in 2019 shows the text of the plaque, "For His Unwavering Commitment To Safety, This Locomotive Is Dedicated In Honor Of Lynell Smith, Track Foreman, Alexandra, La, Harriman & J.C.Kenefick Safety Award Winner, 1986".

UP 6216 (EMD SD60M) displayed a plaque commemorating the 1990 Kenefick Safety Award winner, Larry Breeden, of Coffeyville, Kansas (removed before 2006); moved to UP 9407 (below).

UP 6266 (EMD SD60M) displayed a plaque commemorating the 1986 Kenefick Safety Award winner, Lynell Smith, a track foreman of Alexandria, Louisiana (removed before 2005); moved to UP 5287 (above).

UP 6268 (EMD SD60M) displayed a plaque commemorating the 1988 Kenefick Safety Award winner, Roger Buchanan, Work Equipment Mechanic, North Little Rock, Ark. The plaque remained in place after UP 6268 was renumbered to UP 2423, and was still in place as late as 2021 while in storage.

UP 6748 (GE C44AC) has a plaque commemorating the 1996 Kenefick Safety Award given to John W. Givens, "For His Unwavering Commitment To Safety, This Locomotive Is Dedicated In Honor Of John W. Givens, Foreman General, North Little Rock, Arkansas, J. C. Kenefick Safety Award Winner 1996." The plaque remained in place as late as 2021.

UP 9404 (GE C40-8W) has a plaque commemorating the 1995 Kenefick Safety Award given to Robert Lucio, Track Foreman of Harlingen, Texas. The plaque was still in place as of 2017.

UP 9405 (GE C40-8W) has a plaque commemorating the 1990 Kenefick Safety Award given to Don Englert of Green River, Wyoming. The plaque was removed sometime in late 2013.

UP 9407 (GE C41-8W) had a plaque commemorating the 1990 Kenefick Safety Award winner, that being Larry Breeden of Coffeyville, Kansas; moved from SD60M 6216 (above).

UP 9458 (GE C41-8W) had a plaque commemorating the 1994 Kenefick Safety Award given to Talmage Dalebout. The plaque was still in place as late as May 2015.

UP 9544 (GE C41-8W) had a plaque commemorating the 1992 Kenefick Safety Award given to Bill Howard, Derrick and Car Foreman, Marysville Kansas.

UP 9707 (GE C44-9W) had a plaque commemorating the 1994 Kenefick Safety Award given to the employees of the Palestine Car Shop, Palestine, Texas.

Environmental Recognition

Since its inception on Earth Day 1994, Union Pacific's annual "Chairman's Environmental Award," recognizes a Union Pacific Railroad employee demonstrating outstanding environmental awareness, leadership and responsibility.

UP 9406 (GE C41-8W) has a rectangular plaque commemorating Richard Jacobs, Locomotive Shop Foreman in Fort Worth, Texas, for his "outstanding environmental awareness, leadership and responsibility." Jacobs also won the nationwide AAR Chaffee "Environmental Recognition" Award for 1995.

(View the Union Pacific list for its Environmental Recognition awards, awarded to an employee every year since 1994. Locomotive numbers not shown)

Other Plaques

UP 9804 (as C&NW 8700) (GE C44-9W) was equipped with a metal plaque reading "David L. Meyers, 1947-1994" on its nose commemorating the late David L. Meyers, former C&NW Director-Engineer Training. This may have been ceremonial only, as photos dated in the 1995-1996 time period do not show a plaque, and photos as UP 9804 (painted in May 2000) do not show a plaque.

Coupler Cut Levers

(See Footboards, below)

DDA40X Smoke Deflectors

At some time between 1973 and 1976, UP DDA40X 6910 received smoke deflectors that were installed on both sides of both of its air induction rooftop hatches. In the case of UP 6905, it received smoke deflectors only on its read air inductor hatch at some time before late 1970. The deflectors were installed only along the side and were made of sheet metal approximately six inches high. Both locomotives retained the smoke deflectors until retirement in 1985.

Ditch Lights

As part of the Amtrak Authorization and Development Act of 1992 (Public Law No. 102-533, October 27, 1992), the Federal Railroad Administration formally instituted a regulation that required ditch lights on all locomotives operating in the United States. The regulation required that by 1997, any locomotive operating faster than 20 miles per hour over public grade crossings must be equipped with a triangular-pattern of lights; one headlight and two "alerting" lights. Ditch lights had been in use for the past 40 years on Canadian railroads as an aid to crew safety, and are used to illuminate the side portions, the "ditches," of the railroad right of way on mountain lines with numerous curves. Based on statistics, the FRA hoped to eliminate as many as 3,300 grade crossing accidents over the following 20 years.

The following comes from the May 1996 issue of Pacific RailNews magazine.

FRA Issues Ditch Light Rule -- Back in 1992, Congress directed the Federal Railroad Administration to require "substantially enhanced locomotive visibility measures"— that is, additional lights—in order to improve grade crossing safety. After several years of study and hearings, FRA published its final rules on March 6. These rules confirm the standard the industry has adopted—a triangular system of one headlight and two ditch lights. The ditch lights must be at least 60 inches apart, or 60 inches lower than the headlight. This requirement caused some controversy because Canadian National units, which often operate in the United States have ditch lights spaced 44 inches apart. FRA sidestepped the dispute by grand-fathering engines equipped with 44-inch ditch lights before May 30, 1994. Ditch lights must be at least 36 inches above the rail, except that lights on push-pull cab cars may be 24 inches above the rail. Flashing lights are permitted but not required. Locomotives operated over highway crossings at 20 mph less, and historic locomotives built prior to 1949, are exempt. All other locomotives must have ditch lights installed by the end of 1997. (PacificRailNews, May 1996, page 10)

The following comes from the June 1996 issue of Trains magazine.

"Ditch light" regulation announced -- As mandated in 1992 by a law enacted under President Bush, the Federal Railroad Administration has formally instituted the "ditch light rule," a regulation requiring any locomotives that operate faster than 20 mph over public grade crossings to be equipped with a triangular pattern of lights: one headlight and two "alerting lights." Railroads must be in compliance by the end of 1997. It is estimated that these "ditch lights+ -- the twin auxiliary high-intensity lights usually mounted about frame level and so-called for their initial installation in Canada 40 years ago to aid crew visibility on twisting mountain lines -- will prevent 3300 highway grade-crossing accidents over the next 20 years. FRA has also proposed a rule requiring railroads to develop a program of on-track safety to further protect maintenance-of-way employees while at work. (Trains magazine, Volume 56, Number 6, June 1996, page 20)

Alerting Lights FRA Rule Timeline

Nine UP SD40-2s were equipped with what was then referred to as "Canadian-style" ditch lights in February 1978. Their numbers were UP 3396-3399 and UP 3410-3414. They were intended for assignment in the leading-position on pool trains with Canadian Pacific through Eastport, Idaho. The modifications were completed at Salt Lake City.

In November 1989, and continuing through December 1990, UP began installing ditch lights on a total of 90 former MP SD50s and C36-7s. With authority from Work Order no. 03961, there were to be 30 units modified during 1989, and 60 units modified during 1990.

In early March 2008, new EMD SD70ACe units began to appear with ditch lights on their rear platforms. The details of this are as yet unknown.

Dynamic Braking on TR5s

The following comes from "Union Pacific Switchers and Slugs" by Don Strack, 1996:

UP 1870-1877 and 1870B-1877B (eight A-units and eight B-units) were built in September and October 1951 (between UP's SW7 and SW9 orders) and were assigned EMD order numbers 6284-A and 6284-B. According to a news item in a mid-November 1951 issue of Railway Age, UP's eight TR5s were to be initially assigned to southern California. The news item stated that six of the eight units were specifically for heavy switching in the San Bernardino yards, and the other two were for helper service on the 2.2 percent grade Cima Hill, operating out of Kelso. The use of the TR5s on these helper grades allowed UP to re-assign the 1947-built Fairbanks-Morse H20-44s to the Northwestern District.

To minimize some of the costs associated with the use of what were essentially yard switchers in helper service, in late 1952 and early 1953 the TR5 A-units were equipped with dynamic braking. The addition of this EMD-designed feature included a single 48-inch fan, and four resistance grids, one for each of A-units' four traction motors, installed in an enclosure added to the top of the carbody, just ahead of the cab, blanking out and covering the front cab windows. Because the feature was meant solely to retard the downhill descent of the "light" locomotives, no provision was made for the use of dynamic braking on the cab-less booster units. Due to the limited capacity of the dynamic braking (used only on the cab units to control the speed of their downhill descent), along with the added maintenance for the dynamic braking components themselves, the usefulness of the braking was soon outweighed the associated maintenance costs. Within a short period of time, by 1956, the dynamic braking feature was deactivated, with the components remaining installed on the units, unused.

The use of TR5s on helper service eastward out of San Bernardino was reduced considerably with the delivery of GP7s and GP9s in 1953, 1954 and 1957, but they were still regularly assigned to trains needing helpers heading up Cima Hill. The use of a single TR5 set at Caliente, Nevada for the Clover Valley grade between Minto and Islen was discontinued in late 1953 or early 1954.

The use of specifically assigned TR5 (and all other) helpers in the desert helper districts was discontinued completely in February 1959, an acknowledgment to the versatility of multiple-unit Diesel operation, which allowed the "locomotive" on the head-end to be matched perfectly to the requirements of both uphill and downhill operations. The cow-and-calf sets were re-assigned to heavy duty switching service in other locations. UP 1876/1876B and 1877/1877B were reassigned to the hump yard in Pocatello, Idaho, where they were joined Baldwin AS-616s in both flat switching jobs and serving as motive power for the hump itself.

(Read more about UP's TR5 cow-calf heavy switchers)

"Union Pacific at Provo, Utah stationed a pair of TR5 cow/calf sets throughout most of the 1960's and 70's. TR5's #1874 and 1875 pulled long drags of coil steel between United States Steel's "Geneva Works" and Provo Yard, and occasionally "double headed" trains of Southern Utah iron ore to Geneva from Provo Yard." (James Belmont, Trainorders.com, March 17, 2001)

Don Strack wrote the following on the "Rails Through The Wasatch" group on Facebook, December 16, 2015, in reply to James Belmont photo of UP 1874 at Provo in 1976:

In June 1974, UP 1874 and 1875 were due for Class C engine change out, which included removal of the engine hoods. They had to remove the dynamic brake housings as well, and since the dynamic braking had long since been disconnected, it was decided to not put the housing back on. So that meant that a new slope sheet was needed to replace the dynamic brake housing.

Dick Harding (the shop side foreman) told Orin Harkey (boiler shop boilermaker) to fabricate a new slope sheet for both 1874 and 1875 that connected to the cab, like UP 1876 and 1877 working at Pocatello. I was working running repairs, and mentioned to Orin that the original holes were likely still in the cab wall, and since he had to make a new slope sheet, he should make it slope down instead of sloping up to match the holes Omaha added in 1952 then they added the mod. He asked Harding if it was okay. Harding's response, "Make it like it was." Orin asked what to do about the blanked-off front windows. Harding said to cut out the blanks and he would have windows added, since they were identical to all other SW7s and SW9s.

It took Orin the best part of a week to fabricate the new slope sheets, and make the changes to the units. Orin was an old-head steam boilermaker who had come to Salt Lake City in the late 1950s, after UP closed their Cheyenne shop, and I think he really enjoyed the challenge of matching the original design. The two TR5 cab units turned out real nice. I may have put the bug in Orin's ear, but Orin Harkey did the work, with Dick Harding's okay. Dick Harding could be contrary at times with the guys who worked for him, but not in this case.

(View a photo of the TR5 dynamic braking modification; UPRR photo taken in 1952)

EMD Cabs on MP Units

The following MP units received EMD cabs as part of wreck damage repairs while still in service on MP, prior to merger with UP. (list from Zack Hilton, via email to LocoNotes on February 2, 2001)

Model First Number Second Number
U30C MP 3311 MP 2976
U23B MP 2256 MP 4506
U23B MP 4521  
U23B MP 4528  
U23B MP 2282 MP 4531
U23B MP 4534  
B23-7 MP 2296 MP 4607

Extended Range Dynamic Braking

Dynamic braking is an electrical retarding device that utilizes the main generator and traction motor to retard the speed of a train. Dynamic braking converts the kinetic energy of the moving train to electrical energy, passing the resulting electricity to large resistance grids which convert the electrical energy to heat. The heat is dissipated by a cooling fan (or fans) that receives its power directly from a connection on the resistance grids. As more electrical energy is passed to the grids, the cooling fan speed is increased. Locomotives with dynamic braking were equipped with one large resistance grid for each traction motor. Each resistance grid is limited to 700 amps, with some high capacity dynamics being rated for 920 to 945 amps.

On a train controlled with standard dynamic braking, the engineer applied the independent brake and shut down the dynamic brakes as the amperage dropped between 250 and 200 amps, which usually occurred at 10 to 13 mph. Failure to make this change from standard dynamic brakes to air brakes could result in the head-end of the train running out ahead of the train as the dynamic brakes faded. The ensuing slack could cause a broken knuckle and a train separation.

The effectiveness of standard dynamic braking begins to decrease at approximately 25 mph. At speeds below 25 mph the effectiveness of standard dynamic braking declines rapidly, but can be used at speeds as low as 13 mph.

Extended range dynamic braking allowed greater speed control, which in-turn would allow better train handling. The use of extended range dynamic braking allowed less use of the automatic air brake, thus reducing wear on car wheels and brake shoes. With extended range dynamic braking, the low-speed range is extended to allow dynamic braking to be fully effective at speeds between 25 mph and 6 mph.

Using a combination of shorting contactors, and center taps on the resistance grids, extended range dynamic braking keeps the resistance of individual grids constant, in steps that depend on train speed. All of the grids are used at speeds above 25 mph; 3/4 of the grids are used at 18 mph; 1/2 of the grids are used at 12 mph; and 1/4 of the grid surface is used at 6 mph.

At each reducing step, and as individual grids and portions of grids are shorted out by the contactors and center taps, amperage can return to the maximum 700 amps at each of the three step-down speeds: 18 mph, 12 mph and 6 mph.

The combination of shorting contactors and center taps gave locomotives with four axles a total of eight dynamic braking sections, and six axle locomotives had twelve sections. The lowest speed used the fewest number of sections, allowing maximum braking effort and amperage from the traction motors to be dissipated. To reduce damage caused by the grids overheating, and as an option, locomotives as early as the GP30s and GP35s could be equipped with extended range dynamic braking with larger, high-capacity grids.

Dynamic braking on the locomotives and air brakes on the train may be used together to stop or slow down train. This is called blended braking. Locomotive independent brakes usually are not applied along with dynamic braking at speeds above 6 mph, as this can cause the locomotive wheels to slide resulting in flat spots.

Many observers have wondered about external features of extended range dynamic braking. On EMD locomotives built in the 1960s and 1970s, research indicates that the presence of a small access door with two T-handle latches, located on the dynamic braking hatch is an accurate indicator of extended range dynamic braking.

The GP30s were the first on UP with extended range dynamic braking. This includes both the earlier 800-series in 1962, and the later 700-series in 1963. On both these classes, the access door was on the fireman's side. (The original GP30 demonstrator locomotive, which later became UP 875, had an access door on both sides.)

Union Pacific's GP35s and DD35s were delivered in 1964, and also had extended range dynamic braking. The DD35s had the small door to access their extended range dynamic braking shorting contactors on one side. The front access door was on the right side and the rear door was on the left side.

UP received their DD35As in 1965, and these units had the same layout as the DD35 for their access doors: front access door was on the right (engineer) side and the rear door was on the left (fireman) side.

UP's 1400-series SDP35s, also delivered in 1965, were the first SD six-axle units on Union Pacific with extended range dynamic braking. There were six individual dynamic braking grids, one for each traction motor. The units' extended range dynamic braking shorting contactors were split, three behind a door on the right side, and three behind a door on the left side.

The SD40s delivered in 1966, and SD45s delivered in 1968 had the same extended range dynamic braking as the SDP35s. The DDA40X Centennial locomotives delivered in 1969 and 1970 were a radical departure in locomotive control circuitry but were also equipped with extended range dynamic braking. As UP continued to receive new locomotives (more SD40s in 1971 and hundreds of SD40-2s in 1972-1980), all were equipped with extended range dynamic braking.

The GP50s (ex MP in 1983; ex C&NW in 1995) were the last on UP with the grids located above the engine space, a location that made interconnecting of the grids and center taps difficult, and the cabling subject to engine heat problems. The new-in-1984 SD50s for MP were the first on UP that had their grids in a circular wagon wheel pattern, making interconnecting easier. All since the SD50s have used the wagon wheel pattern.

Extra Ballast

In June 2013, Union Pacific began receiving an entire class of modern EMD SD70 units, which UP calls SD70AH (numbered from UP 8824-8996) and modern GE ES44AC units, which UP calls C45AH (numbered as UP 8052-8257). The 'H' designation denotes "Heavy." But these are only the latest of several of Union Pacific diesel locomotives delivered with extra weight to improve traction.

(Read a roster listing of C45AH units at the Diesel Shop; scroll down to UP 8052)

Just as a point of reference for how extra weight is/was added to locomotives. While working for UP back in the late 1970s, one of their SD45s came in to the shop for wreck repairs. About half of the end sheet had to be removed and replaced due to wreck damage, revealing the interior of the frame. On UP's SD45s, the end sheets were 2-inches thick instead of the more standard 3/4 inch thick, I suspect for the added weight. While the portion of the end sheet was off, I noticed inside between the frame members there were two very large cast steel blocks, about 12 inches by 12 inches by 24 inches. These would have been added during construction, and were very well attached by several large weld beads. A quick calculation, with steel at about 500 lbs. per cubic foot, means that the two blocks weighed about 2000 lbs, or an additional 4000 lbs with similar blocks assumed to be at the other end also. (Don Strack, email to Union Pacific Yahoo discussion group, February 14, 2014)

Farr Grilles

Farr grilles are a brand name of a primary air impediment (screen) design made by Farr-Air Co. of Los Angeles. Most EMD E units and F units after 1954 had this type, as opposed to the earlier horizontal design that was fabricated. The later design was stamped, and therefore much cheaper to produce. In later years, UP removed every other slot to increase air flow, in an attempt to get their E8s and E9s to run cooler. The unique snow shields atop the winterization hatches were part of this same effort. I would imagine a quick look at Railway Age or Railway Mechanical Engineer from the 1953/1954 time period might reveal a contemporary ad.

EMD first tried what railfans call "chicken wire" screen with the FTs, F3s, and early Es, then the Farr-Air horizontal type in about 1948, then the vertical Farr-Air grille from about 1954 on.


FRA Rules

The Federal Railroad Administration first proposed a rule to eliminate footboards in October 1973, with locomotives built before January 1, 1974 and locomotives built after December 31, 1973 being subject to the change. The proposed rule was published in the Federal Register on October 1, 1973, and the railroads responded with comments to extend the comment period and delay the compliance dates.

(Read the proposed rule, in the Federal Register, October 1, 1973; scroll to page 27302)

The railroads and equipment vendors provided comments and hearing testimony, and the final version was published in the Federal Register on July 26, 1974. The compliance dates were changed to apply to locomotives built before April 1, 1975, and locomotives built after March 31, 1975, must be in compliance by January 1, 1978. The final rule became effective September 1, 1974.

(Read the final FRA rule, in the Federal Register, July 26, 1974; scroll to page 27327)

In September 1976, the compliance dates were changed to, "...locomotives used in switching service built after March 31, 1977, must be equipped as provided in this section. All locomotives built prior to April 1, 1977, used in switching service after September 30, 1979, shall be equipped as provided in this section. Each carrier shall so equip forty percent (40 percent) of such locomotives by October 1. 1977, seventy percent (70 percent) by October 1, 1978, and all such locomotives by October 1, 1979."

(Read the revised final FRA rule, in the Federal Register, September 8, 1976; scroll to page 37782)

The current rule, with minor changes, was published October 2023.

All locomotives used in switching service built after March 31, 1975, may not be equipped with end footboards or pilot steps. (49 CFR 231.30 paragraph d, part 1)

After September 30, 1979, all locomotives used in switching service built before April 1, 1975, may not be equipped with end footboards or pilot steps. Whenever end footboards or pilot steps are removed from a locomotive, the uncoupling mechanism and horizontal end handholds of the locomotive must be modified. (49 CFR 231.30, paragraph d, part 2)

Each locomotive used in switching service must have means for operating the uncoupling mechanism safely from the switching step as well as from ground level. No part of the uncoupling mechanism may extend into the switching step or stairway opening or end platform area. (49 CFR 231.30, paragraph f)

(Read the entire 49 CFR 231.29, Current Rule; Road locomotives with corner stairways and uncoupling mechanisms)

(Read the entire 49 CFR 231.30, Current Rule; Locomotives used in switching service)

Most railroads, including Union Pacific, adopted the policy that any locomotive with footboards could be used in switching service, and began modifying all locomotives, to remove footboards and provide an uncoupling mechanism.

When it came to uncoupling a locomotive while standing on the end steps, compared to standing on the footboards, a change was needed in the uncoupling mechanism itself. On a drawing dated July 26, 1973, UP created a complex mechanism that used a combination of levers and pivots mounted to the end handrail posts. This was specifically for the railroad's snowplow-equipped GP7s and GP9s, but the date suggests that EMD was asked to copy the design for new units being delivered during 1974.

For new EMD locomotives delivered during 1974, the locomotives came with the same over-enginered and complex UP-designed uncoupling mechanism that allowed a person standing on the lowest step to uncouple the locomotive from adjacent equipment. UP locomotives delivered in 1974 included the first 40 GP38-2s, UP 2000-2039, in March 1974, and the 45 SD40-2s in the 3243-3287 group in June and July 1974. Because these locomotives were delivered with snowplows, they were not equipped with front footboards, and they were also delivered without rear footboards. (The previous group of SD40-2s, UP 3203-3242, were delivered in April-June 1973, with snowplows and rear footboards.)

The new General Electric U30Cs delivered beginning in March 1974, beginning with UP 2870, had a much simpler uncoupling mechanism that complied with the new FRA rule.

UP Removed Footboards

During 1974, in compliance with the proposed (and later, adopted) FRA rule, as it applied to cabless booster locomotives, Union Pacific began removing the footboards from its GP9B and SD24B locomotives. This was done by torching the bolts that held both the footboard brackets and the air hose boxes, leaving the bare end plates. (The GP30Bs were delivered without footboards or pilot plates.)

At the same time, the uncoupling levers were modified to include an extension welded to the coupler cut levers to allow the coupler lift pins to be operated from the step wells. Soon after, UP began removing the footboards from the switchers, and replacing them with flat pilot plates, made of 3/4-inch steel.

On locomotives in mainline service, the 1-inch by 3-inch bracket that held the footboard was torched off at the point it extended outside of the air hose box, leaving the air hose box in place. This can be seen in photos where the two openings for the bracket is visible on the front of the air hose box. UP didn't modify any units to have larger bottom steps. The SD7s already had them, along with having a step hole in place of the middle step.

(Side note: Prior to the FRA order to remove footboards, all through the 1970s and pending the formal adoption of the FRA footboard rule, whenever a footboard needed to be replaced at Salt Lake City, it was replaced with an Apex style, not from roof walks, but footboards manufactured for that purpose. These replacement footboards were 12 inches by 30 inches. At Salt Lake City the only source for the pressed sheet metal footboards was as a part from EMD. They were expensive and not as durable as the Apex style. Other shops on UP and other roads used the EMD replacement design. They tended to stand out because of their orange EMD primer paint. Occasionally, for want of a regular EMD replacement end step, a replacement step was fabricated from Apex footboards of different dimensions.)

Uncoupling Levers

To provide a method of uncoupling from the bottom step, some already-built locomotives had a loop extensions welded to the existing coupler cut lever; a very simple solution to uncoupling from the step wells. On locomotives of the same era delivered new to other roads, EMD furnished an uncoupling lever that had an extra loop as part of the uncoupling lever, which was done along with a notch in the upper corner of the end sheet.

For UP, the new EMD units came with UP-designed complex uncoupling mechanism that was first presented within UP's mechanical department in July 1973. The design was on a drawing for "Auxiliary Uncoupling Rigging" for GP7s and GP9s, and was dated July 26, 1973. The result was an expensive and over-designed, and complicated mechanism. It worked fine until the handrail stanchions became deformed when someone forgot to disconnect the chains that are connected between units in multiple unit operations. Theoretically, there are weak links in the MU chain that would release before the chain pulls the handrail stanchions down, but they didn't always release before the stanchions are already pulled straight out from the platform. A lot of time was needed to pull the end handrail stanchions back up, using a combination of hand operated chain hoist (called a come-along), and a torch to heat the base of the stanchions. (Those grab irons on each side of the angled nose and hood end came in real handy as somewhere to connect the chain hoist to.) What should have taken no more than a half hour at best, became a four hour job that usually suffered from "good enough," since the work was usually done on the ready track, and they were usually holding a train, waiting for the locomotive.

The specification for new SD40-2s 3243-3272, and new GP38-2s 2000-2039, included a line item for "Auxiliary uncoupling lever per U.P. drawing at both ends of the locomotive," at apparently no cost to UP. These locomotives were delivered in 1974. All of the GP38-2s delivered to UP in 1974 (UP 2000-2039) and 1975 (UP 2040-2059) had the UP design.

In his study of UP's SD40-2s in the January 1986 (Volume 2, #1) issue of The Streamliner, published by the Union Pacific Historical Society, Bill Metzger found that the following SD40-2s were delivered with the complex uncoupling arrangement.

UP 3243-3287, June-July 1974 (later as UP 8003-8034)
UP 3288-3304, March-April 1975
UP 8035-8064, July-September 1976 (later as UP 3305-3334)
UP 3335-3399, February-May 1977
UP 8065-8074, May 1977 (later as UP 3400-3409)

(Additional research in photographs is needed to identify all of the locomotives delivered with the UP-designed uncoupling rigging.)

Fuel Fill Adapters

The following comes from Keepin' On Track, A Newsletter From The Locomotive Maintenance, Planning & Technology Section of Maintenance Operations, Union Pacific Railroad, Volume 4, Number 1, October 1992:

Changeover of Fueling Equipment: Buckeye to Snyder -- Union Pacific currently uses Buckeye fueling equipment to fuel its locomotives. There are approximately 450 fuel nozzles on the railroad and 6,038 locomotive adapters (two per unit).

Defective fuel nozzles currently are being rebuilt by Emco - Wheaton, makers of the Buckeye equipment. Present performance of these rebuilds indicate that they are only lasting three to six months. Emco - Wheaton has indicated that the nozzles are worn out and should all be replaced.

The annual cost of rebuilding these nozzles is $117,000. To attain full automatic shutoff, when fueling with Buckeye equipment, both the nozzle and locomotive adapter must function properly. When either of these devices fail, fuel spillage occurs.

One of the main differences between the Buckeye and Snyder systems is that all of the automatic sensing components on the Snyder are located in the nozzle, similar to fueling an automobile. On the Buckeye system, both the nozzle and adapter contain critical components that require continual maintenance to ensure efficient fueling. Union Pacific and the Southern Pacific are the only major railroads that use the Buckeye fueling system.

A detailed economic analysis has been completed on the different options available to correct this situation. The results indicate that a replacement of the current equipment with Snyder would ensure efficient fueling operations in the long term and would eliminate the current annual rebuild expense.

In addition. there would be associated savings in terms of fuel and environmental costs. As soon as funds are available, this $1,500,000 project will be implemented. In order to be prepare for the application of the locomotive adapters, a project is being implemented to drill and tap fuel tanks. This procedure is only required on EMD units and will enable the larger diameter sensing hose to be applied. Once the complete conversion is implemented. a goal of three months has been made to complete the changeover.

Fuel Tender Program

(Read more about UP's natural gas and diesel fuel tenders)

GP9 Battery Box Vents

UP GP9s 300-320 were built in July 1957 and had the single large louver set on the battery box doors common on all GP9s built up to that time.

UP 321-349 (and 300B-349B) were built three months later, in September 1957 and had the two small groups of three louvers, like the later GP18s and GP20s.

This information was discovered while researching similar information in EMD's "Inside EMD" service bulletins (see below).

GP9 48-Inch Radiator Fans

(First published to UtahRails.net blog on April 15, 2011)

For several years from the early 1970s through to the late 1990s, I thought that Union Pacific GP9 cab unit number 321 was the first GP9 on UP to receive 48-inch radiator fans. I was mistaken.

Back in 1972 or 1973, I was in the EMD parts warehouse in Ogden, Utah. In the foyer, they had a full set of EMD parts catalogs, in the standard, flip-up EMD catalog rack. In the same rack, there was a set of an EMD sales department newsletter, called "Inside EMD." It contained all kinds of interesting stuff, especially from the early 1950s. One bit of information I've always remembered was it called out specific orders when options were available, or no longer available.

One small item that I recall seeing during my visit to the EMD Ogden warehouse was that the first GP9 to receive 48-inch radiator fans was order number 5552-21. I wrote the info on a scrap of paper and headed home. Using my recently acquired copy of the EMD 1972 product reference, I looked up order number 5552. I found that it was for UP 300-349 and 300B-349B, built in July to October 1957, and that 5552-21 was UP 320, being the 21st unit of order 5552. Later research found that EMD regularly made arrangements to retrofit previous units in a particular order to the latest configuration, meaning that UP 300-319 likely received 48-inch fans after leaving the factory. I had not seen a builder's photo of any of these unit to verify that assumption that UP 320 was the first.

Back in May 1999, while doing research among photographs of Union Pacific diesel locomotives, I noticed that the 300s were delivered with 48-inch radiator fans. That break between 320 (built in July 1957) and 321 (built in September 1957) was where I thought the break was between those delivered with 36-inch fans and 48-inch fans, according to that EMD publication I saw 25 years before, making me think that the units delivered with 36-inch fans were retrofitted within six months with 48-inch fans (I mentioned this in a photo caption for the photo of UP 300, taken in April 1958, in my article in Diesel Era about UP's turbocharged GP9s). I discovered that this was wrong after looking again at Harold Ranks' photo of UP 306 being delivered in July 1957. The photo shows the unit with 48-inch radiator fans, and, by the way, also showing that the 300s were the first units with aluminum paint on their trucks.

I've often wished that I had paid better attention to those books in the EMD warehouse. They closed their Ogden warehouse in September 1982.

GM's Electro-Motive Division moved its warehouse services from Ogden in September 1982, into a 52,000 square foot building in Omaha, to provide warehousing service to one of biggest customers. Prior to the move to Omaha, EMD shipped locomotive parts to Omaha from EMD warehouses in Ogden and from its main facility in McCook, Illinois, near Chicago. At the time, about 90 percent of UP's locomotive fleet was EMD. The new EMD warehouse in Omaha warehouse gave UP faster and less expensive service. The move produced $25,000 in revenue for UP as 27 UP Motor Freight trailers were used to ship the EMD parts from Ogden to Omaha.


E8 and E9 Headlights

One of the spotting features that make an E8 compared to an E9 is that the E8s has both a headlight in the door, and a signal light in the upper headlight location on the locomotive's nose. All of the 18 E8s (UP 925-942), and only the eight E9s in the UP 900-907 group delivered in 1956 had dual headlights. All E9s delivered in 1954 and 1955 had single headlights and no signal light, as did the seven E9s (UP 908-912) delivered in 1961-1963.

Journal Boxes

There were different designs of roller bearing journal boxes used by EMD used on most of their early units. In later years, and because they were interchangeable, these journal boxes were seen mixed with one brand on one axle, and another brand on another axle on the same truck.

Half of the roller bearing business went to Hyatt (a division of GM), and half to Timken (a direct competitor of Hyatt's). Some have speculated that the mix was due to wartime shortages, but the reality is that General Motors was constantly being watched by the Department of Justice to guard against antitrust violations.

The square ended journal boxes could have a speed recorder drive mounted into it. Not possible with the sloped front journal box. Inside the journal box was a thrust block to absorb the lateral shock of the lateral movement of the axle (traction motor). In the square boxes the spring plates that supported the thrust block had a hole through it for the speed recorder drive. The plates in the sloped boxes had no holes. The boxes were totally interchangeable except for the option of applying a speed recorder drive.

When applying a traction motor to the position of the speed recorder drive, the axle had to have a splined hole in the center of the axle. Not all traction motors have the splined hole in the end of the axle.

On the Union Pacific all the oil bath journal boxes were Hyatt, and all the sealed grease boxes were Timken.

Commenting on the mix of journal boxes seen on GP30s, Warren Johnson wrote to the Utah Railroading Yahoo discussion group on January 30, 2009:

The answer to your question is easy. The old larger type journal boxes are J1 and J2 journal boxes. They house the journal box roller bearings. The roller bearings are in a cage inside the journal box. The race for the rollers is on the axles. The J1 box is the one with the sloped front. The J2 box is the more square one. It was made flat on the front so if it was needed, they could attach a speed recorder angle drive. A cable ran from the journal box up to the speed recorder. These boxes were the original boxes that came out on the early F units. All of the journal boxes you showed are completely interchangeable. What ever box was handy, they used.

Multiple Unit Connections

(Read more about multiple unit connections on UP locomotives)

Natural Gas Program

(Read more about UP's natural gas program)

North Little Rock Snowplows

Beginning in about late 1997, UP began applying a new standard snowplow to the front of its road locomotives. This new design features an almost horizontal top portion of the snowplow and differs greatly from the previous design, which had an angled top portion. Locomotives with the new design received new snowplows at North Little Rock, and at Boise Locomotive Company.

Number Boards

For trains operating over AT&SF tracks over Cajon Summit, between Daggett and Riverside, California, Union Pacific trains showed the locomotive number in their number boards, in accordance with AT&SF operating practice.

July 5, 1965
"Union Pacific discontinued the use of train number in locomotive indicators. The last train to use train numbers was train #28 that arrived in Omaha. From now on the locomotive number will be displayed and not the train number. The Union Pacific was one of the last railroads to still be using train numbers." (The Mixed Train, July 5, 1965)

The date of this report was July 5, 1965. Train #28 departed North Platte just after midnight and arrived Omaha 7:00 am - the end of its run. Since the 5th was a Monday, I am guessing the change was effective at 12:01 am, Monday, July 5, 1965. (David Seidel, email dated June 28, 2009)

(Read more about steam locomotive train number indicators)

(See also: Train Number Indicators, below)


Union Pacific's engineering department issued a drawing in May 1946 covering the apparent first installation of two-way radios on Union Pacific, on 16 locomotives that other information shows were assigned to the Omaha-Council Bluffs area.

A news item in New York Times, September 27, 1947 reads: "OMAHA, Sept. 25 (AP) -- The Union Pacific Railroad announced today a $125,000 communication improvement program that includes two-way radio in diesel switch engines in several yards, two-way radio on four freight engines and cabooses and installation of an intercommunicating system at retarder yards being built at Pocatello, Idaho. G. R. Van Eaton, superintendent of the company's telegraph department, said completion of the project is expected by the end of the year." (A similar item appeared in Railway Signaling. Volume 40, number 11, November 1947, p.727, courtesy of Mark Hemphill)

Research based on an index of Union Pacific's engineering drawings, shows that the following locomotive types received two-way radio equipment on the following dates:

Union Pacific issued a separate letter with each locomotive order, listing the specifications showing how each order would be equipped from the factory, and what UP would add at Omaha during the set-up. The letter for GP9s 300-349 in April 1957 does not mention radio equipment, including antennas. Research using photographs suggests that all these early installations used the common 12-inch whip antenna

A similar letter of setup instructions for the 3600-3649 SD45s in January 1968 says that the voice radio should be installed the same as SD40s 3000-3082, delivered in March 1966. It also states that the radio antennas are "Firecracker type, Model ASP-16," without any information about where to put them.

In later letters, as late as December 1974 (the most recent available) the instructions are merely to install the radio on top of the control stand, the same as for SD40s 3000-3082. So, it appears that the SD40s delivered in March through December 1966 were the touchstone of radio installation, which might explain why the above list ends with the same year, concerning individual drawings for individual classes of units.

RCS Platforms

Installation of the RCS (Radio Control Systems) radio equipment was in the short hood of the SD45s. This necessitated the relocation of the Coded Cab Signal equipment box to the conductor's side walkway, behind the cab.

The initial antenna configuration consisted of a pair of "firecracker" antennas mounted directly on the locomotive cab roof. Difficulties in radio signal reception resulted in a redesign of the antenna system to include an antenna platform, or ground plane, mounted on risers above the cab roof, with a pair of can style antennas mounted on the platform.

The normal voice communication firecracker antenna was relocated to the back of the long hood, between the curved grab iron behind the rear most radiator fan, and the sand filler hatch.

Measurements of the RCS antenna ground plane platform, were furnished by Jim Booth Jr., in an email dated May 24, 2000.

At Salt Lake City, the shop crews had to cut the platform off to lift the units with the 250-ton crane, because the platform interfered with the cross piece of the crane. The weld lines for these legs, about 3 or 4 inches above the roof, can be seen upon close examination of photos of the locomotives.

(Read more about RCS operations with UP's SD45s)

Roof Hand Grabs

Beginning in the 1959-1960 time period, UP's cab units began receiving a variety of additional hand grab irons on their roof. These were immediately above the windshields, and above the side entry doors. Also, the side handrails along side the side entry doors were extended upward, with a curve at the top to match the curve of the edge of the roof.

Research suggests that these additional hand grab irons may have been a safety requirement to allow employees safe access to clean the exterior of the cab windows, and safe access to the top of the locomotive to service or replace the air horns.

The extended side handrails may have been in response to complaints by engine crews, since the as-delivered handrails ended at about shoulder height as the person entered the side door. This was becoming a problem as crew members attempted to enter the cab while carrying their grips.

The first five or six of the 8500 GTEL gas turbines were delivered without the additional hand grab irons, with later unit being delivered with the additional hand grab irons. These five of six unit received the additional hand grabs soon after being delivered.

Roof Top Flashers

Dick Harley wrote about UP's use of roof top flashers to the UP Modelers Yahoo group on November 4, 2011:

In searching the 'ST' drawing index between late 1965 and early 1969 (drawings ST-8400 to ST-8800) I found installation drawings for a "Rotating Warning Light" listed for E8/E9 and U50 locos issued in March, 1967 and for SD40 locos issued in April, 1967. A drawing for "Dual Rotating Warning Lights" for SD24 #423 (SD24M #3100) was issued in April 1968. In November, 1968 drawings were issued for wiring diagrams for rotating warning lights on GP35, DD35A, SDP35, SD40 and SD45 locos; and for installation of a warning light to GP30s. And, in January, 1969 a drawing was issued for installation of a rotating warning light on EMD switchers. Whether the "Used On" classes on any of those drawings were expanded to other classes by revision after original issue, I cannot tell. I have none of those drawings, nor any of the correspondence that would have accompanied them to the shops.

The only Operating Rules book that I have found, so far, to mention those warning lights is the May 1, 1972 Operating Rules book for the UP RR Company. It states in Rule 17 (F) the following: "Revolving amber lights on locomotives so equipped must be burning both day and night as follows: On road engines, when engine is moving, except on trailing units in multiple consist. Light must be extinguished when stopped clear of main track to meet a train. On yard engines, when moving in a street and when approaching or passing over public or private crossings."

I have found no correspondence so far that discusses the whys or how effective those lights were. I have not documented what units had warning beacons when new, though I know DDA40Xs did.

Union Pacific issued a separate letter with each locomotive order, listing the specifications showing how each order would be equipped from the factory, and what UP would add at Omaha during the set-up. The letter for GP9s 300-349 in April 1957 does not mention a roof warning light. There is no mention of roof top warning light in the January 1968 letter for the SD45s, 3600-3649. In November 1968 a drawing was created showing the installation of rotating warning lights on GP30s 700-735 and 800 and 801 (ST-8778).

A letter for DDA40X 6900-6924, dated March 19, 1969, shows "Apply one Western D-312 amber warning light on centerline cab roof (Mounting bracket and provision for wiring applied by EMD)."

Drawings were issued in October and November 1971 showing the application of Western D-312 rotating warning lights on the remaining GP9s, SD7s, GP20s, and Alco C-630s (ST-9029, 9038, 9041).

Apparently, the Western Model D-312 revolving light was used until some time in third quarter 1974. It was called out specifically as late as the GE U30Cs 2870-2904, letter dated January 24, 1974, "Warning Light, Western D-312". The letter for the GP38-2s, 2040-2059, dated September 27, 1974, only mentions that EMD was to provide "provisions for application of warning light to cab roof."

The letter for EMD SD40-2s 3288-3304, dated November 4, 1974, showed "Warning lights - Reflectolite Model 6551", by authority of a letter from F.D. Acord dated August 13, 1974 (FDA-296). A similar letter, dated December 3, 1974, for the U30Cs 2905-2919, shows the Reflectolite Model 6551, by authority of the same letter from Acord (FDA-296). The letter for SD40-2s 3335-3409, dated January 11, 1977, continued to show the warning lights as the Reflectolite Model 6551.

(A review of the engineering drawing index shows that no drawings were issued covering these Reflectolite warning lights. Also, no drawings were issued after those in 1971 covering the Western D-312 rotating warning lights.) (The index ends with drawing ST-9797, dated October 1978.)

Safety Cabs

In response to concerns for increased crew safety, Union Pacific and General Electric worked closely to design a version of what has been called the North American Safety Cab, a concept already well developed in Canada. The result, completed in November 1988, was GE's wide-nose demonstrator B39-8W no. 809 (former B39-8 808, and originally built as B36-8 demonstrator 606). GE no. 809 was sent to each of the railroad's major terminals for crew evaluations. Union Pacific reaction to the design of the cab on the 809 was mixed, with many details in need of improvement. General Electric, with a great deal of input from Union Pacific operating department personnel, went back to the drawing board and came up with the new design that made its first appearance on UP 9356 in December 1989.

In an article in an August 1994 issue of the Journal of Commerce, Robert Grimaila, UP's general director of maintenance planning and technology, remarked that the new safety cab provided "additional functionality. By extending the full-width cab forward over the locomotive nose, the crew has an additional 24 square feet of work space. The extra space is used to relocate what used to clutter the old cabs. Electronic and control equipment that would have to be hidden beneath the floor is more accessible and serviceable. In addition to safety features for the crew, and space to declutter the crew space, we have added insulation that has allowed us to make the first stabs at really reliable heating-ventilating-air conditioning systems." The new safety cabs added about $50,000 to the $1.5 million cost of a new locomotive.

UP's first safety cab units were SD60M 6085-6268, delivered in January 1989. These 184 units, delivered in January 1989 through November 1990, were fitted with the earlier version of the North American Safety Cab with three cab-front windows and straight nose sides.

Union Pacific's first order of wide-nose General Electric Dash 8s (also called "Super Cabs") came in December 1989 through March 1990, with the delivery of 50 units carrying road numbers 9356-9405.

One of the design differences between the GE and EMD versions is GE's use of sloping front cab windows to reduce glare. Another improvement, made on both GE and EMD units, is the nose mounted headlight, moved from above the windshields, to eliminate the glare of the headlights off of the top of the low nose at night.

Later changes to the safety cab design on EMD locomotives included a small change to the slope of the nose at the outside corner, lowering the corner a small amount to allow a person riding on the front steps to be seen from inside the cab. A more major change was from three front windows to two front windows. A summary by Sean Graham-White shows the changes to the EMD cab on UP:

This later version of the safety cab (two windows and inward-angled nose sides) remained in production by EMD from late 1991 through early 1999 with the delivery of the last SD9043AC units numbered as UP 8179-8308, delivered in January 1998 to January 1999. The first SD70Ms on UP, beginning in April 2000 with UP 4000, and continuing through UP 5126, delivered in November 2002, were also equipped with this later version of the two-window safety cab.

Beginning with UP 5127 in September 2004, UP's SD70 units, nicknamed as "new cab SD70s" came equipped with all-new design cab, greatly changed from the earlier designs. UP's newest SD70ACe units, as of late 2013, continue to use this new design safety cab.

For the GE units equipped with safety cabs, the design has essentially remained unchanged from the earliest C40-8W (C41-8) of 1989, through to the newest ES44AC (C45AH) units delivered in late 2013, numbered up to UP 8111.

Nose Door Windows

Originally, windows were installed on the nose doors of safety cab units to allow a crew member leaving the cab to see a fellow crew member on the walkway prior to opening the door. In practice, however, on-coming crew members nearly always stayed on the ground until the off-going crew climbed off. It is also pretty difficult for two people with their grips and other necessary items, to pass each other on the front platform; there simply isn't room.

The first SD60Ms on UP to receive nose door windows from the factory were UP 6216-6268, delivered from September to November 1990. The earlier units, UP 6085-6215, were delivered in December 1988 to June 1989 without nose door windows, and the feature was added later by UP. UP's first Dash 8-40CWs began arriving in December 1989, numbered as UP 9356-9405, and were equipped with nose door windows right from the initial delivery.

A project to remove the nose door windows began during early 1999 because crews began to be concerned about foreign objects and material from a grade crossing collision entering the cab area through a broken nose door window. The most apparent units to have their nose door windows removed are the SD60Ms that are renumbered into the new 2240-2520 number series.

SD40-2 Features

Here is a summary of UP's 686 SD40-2s, not counting the MP, C&NW, and MKT units (sixteen orders spanning eight years of production, from 1972 to 1980).


Hand Brakes

Radiator Screens

Exhaust Stacks and Radiator Fans

SD40-2 Nose Lengths

(Read more about the nose lengths of UP's EMD SD40-2s)

Signal Lights

When were the rooftop Mars signal lights installed on Union Pacific City of Denver Streamliner locomotives, and when was it moved on the City of Denver units from the roof, down to the nose?

The installation of a rooftop signal light on the COD units may have been in response to a change in operating rules in mid to late 1946.

A review of dated photographs suggests that UP applied Mars signal lights to the top of the COD Streamliner units between May and September 1946, at the same time as they installed similar Mars lights on the 4-8-4 800-class Northerns, along with smaller versions on the Alco PA passenger diesels. It appears that the Mars light on the COD units was moved from the roof, down to below the nose headlight in about 1947.

A review of an index of engineering drawings shows the following drawings and the dates they were created:

The use of Mars signal lights in 1946 was in response to the avoidance of a fatal collision near Nevada, Iowa, in which the 16-car westbound Los Angeles Challenger had a derailment due to a broken rail, causing an emergency brake application. The engineer immediately turned on the Mars signal light's red emergency light, which was seen by the 11-car eastbound San Francisco Challenger, allowing the eastbound train to safely stop before colliding with seven derailed cars on the westbound train. The red emergency light surely prevented numerous injuries and possible deaths. The incident took place on June 29, 1945. (Chicago Tribune, August 19, 1945)

Signal Lights Patents

Jeremiah D. Kennelly was president of the Mars Signal Light Company, with headquarters in Oak Park, Illinois, a suburb of Chicago. Mars Signal Light Company began operations in Chicago in 1925 as a manufacturer of sirens.

"The Mars Signal Light Company began operations in Chicago in 1925 as a manufacturer of sirens. The firm was organized by the Mars Candy Company, therefore the derivation of the name, Mars Signal Light. The firm installed the first moving light on a Chicago fire truck in 1929, invented the first rotating beacon in 1947, and pioneered the development of the first oscillating safety light for railroads. They also initiated the use of sealed beam lights for standard locomotive headlights. Mars sirens for military use were adopted by the military during World War II. In 1973, the company moved its operations from Chicago to Naples. In addition to sirens, the company has developed and perfected signal lights for emergency vehicles such as police cruisers, ambulances, fire fighting apparatus and others. Currently, there are 21 persons employed." (Naples Daily News, April 24, 1983)

"The first light from MARS was manufactured in 1929 and patented in 1930. This was the first moving signal light. The first manufacturing venture into the signal light field by MARS was made by the MARS Candy Company, believe it or not." (Naples [Florida] Daily News, May 20, 1973)

"Named for His Backers -- Former Oak Park Policeman Jeremiah Kennelly made his first figure eight light a few years before the swift diesel streamliners caused railroads to look for oscillating signals. The initial product was a moving signal for use on fire, police, and emergency vehicles. The company was named after the late Franklin C. and Ethel V. Mars, friends and financial backers of Kennelly, and the first light was made in the candy company's machine shop. In 1934 Kennelly turned out a railway crossing light. A year later his first figure eight for locomotives was mounted on a North Western 400. In addition to these products, the company now makes stationary locomotive lights, moving rear train signals, controls for railway signal lights, and sirens." (Chicago Tribune, January 13, 1952)

(View the many signal light patents held by Jeremiah Kennelly)

In June 1949, the Mars Signal Light company sued the Pyle-National company for stealing its designs in order to offer its own similar signal light. (Chicago Tribune, June 23, 1949)

The Mars light operated in a figure-8 pattern. In later years, Pyle-National offered its Gyra-Light, which operated in an ellipse pattern.

Jeremiah Kennelly died in 1969, at age 69. Upon Kennelly' death in 1969, the company was sold to Oliver Burland, and the company remained as a Burland family-owned business well into the 1980s, after its move to Naples, Florida in 1973.

In May 1973 the Mars Signal Light company announced that it was moving its headquarters and production facilities from Chicago to Naples, Florida. At the time the company's major products were light bars and sirens for police and fire vehicles. The new factory was to be ready in September 1973, but production by 22 employees began in early June 1974. (Naples [Florida] Daily News, May 20, 1973; Naples Daily News, July 7, 1974)

In 1983 the Mars Signal Light company was sold to Sight and Sound Enterprises, Inc., with the Mars Signal Light name being retained. In March 1987 the company was sold to Universal Energy Systems, Inc., of Dayton, Ohio. At the time of the sale in 1987 the company employed only 10 people. Upon her death in 1989 at age 86, it was reported that Edna Burland was one of the founders of the company in Chicago in 1929. Her son, Oliver Burland, passed away 11 years later in March 2000 at age 74.

Snow Plows

Comparing the internal company locomotives rosters from 1968 through 1980, it appears that UP began applying pilot snow plows in 1971, with the delivery of SD40s, numbered from 3083 and up. The DDA40X locomotives, and the U50Cs, both delivered in 1969-1971, had snow plows built-in as part of their front pilots. The U30Cs, from 2810 and up (delivered in 1972), like the SD40s, had snow plows applied as a separate item. The first SD40-2s, numbered from 3123 and up, were delivered in 1972 with snow plows.

Here is a PDF of the "Pilot Snow Plow" sections from the 1968 to 1980 company rosters.

(UP Diesel Snow Plows, 1968-1980) (PDF; 19 pages; 0.8MB)

Here is a PDF of the entire company rosters from 1968 to 1980.

(UP Diesel Company Rosters, 1968-1980) (PDF; 19 pages; 22MB)

Snow Shields on E8/9 Units

When and why did UP put snowshields on top of their E8s and E9s?

On Union Pacific, by early 1955, the E8s and E9s were experiencing cooling problems, and operating officials determined that the small opening on the side behind grilles was restricting the amount of intake air available for the engine. The road's solution was to cut an opening in the top of the winterization hatch, immediately above the reverse-mounted intake fan. Tests of this new configuration revealed that the new top opening allowed rain and snow to be pulled into the engine room, causing electrical grounds, since the electrical cabinet was located right below the intake filter box. UP's solution to this rain and snow problem was the road's trademark "snowshields," mounted above the extra opening in the winterization hatch. Snowshields were installed on the road's E8 and E9 fleet, beginning in 1955-1956, and continuing through the late 1950s.

The original question was asked on the Diesel Modeler's email group in July 1999: "UP was well known for applying snow shields over the winterization hatches on its E8s and E9s. However, they were applied over the blank end of said hatch, not over the grill end, and I am wondering just what they were supposed to do. Can anyone explain how they worked? I have applied these shields (Utah Pacific Part #83) to my UP P2K E8A and kitbashed E8B, but am wondering about their intended function."

In July 1999, Steve Orth asked Bill Metzger for his comments about whether or not there is a hole under the snow shield. Bill answered on July 21, 1999:

"Yes, there were holes cut in all winterization hatches. This was to improve airflow in the thin air of Wyoming. Short of turbos, this was the best way to get more air into the carbody (remember the GP9 experiments). E-8/9 drawings show that the "front" fan at both ends point down (into car body). They pulled air into the side ducts in the conventional system but it was not enough in the low Oxygen of high altitudes. So UP cut the extra opening on the top directly above the fan to allow a direct shot into the body and supplemented the standard flow. We had a diagram with colored arrows of this all ready to go for the E unit Streamliner articles but it was eliminated to limited color signatures of that era.

So now there was a 36" hole in the roof of the hatch sucking air directly down into the carbody. Therefore the snow shields. I spent an entire day in mechanical in Omaha looking for a diagram to show the modifications and the design dimensions of the shields. No Luck! I even talked to a retiree who said "the diagrams are in the file cabinet over to your left in either the bottom drawer on the on right above it". But no luck--gone home in someone's personal file I guess. The 951 as the Preamble Express had the shields removed because of restricted clearances on it's trip around the country. Several photos were published looking down from bridges that show the "holes" with the chicken wire grill.

And since their run of about 1989, Overland models has included these openings on their models of UP locos."

The air intake on an E8/9 was through the side grilles, via a duct that funneled the intake air up to the roof hatch, then down through the 36 inch intake fan and into the filter compartment. Maybe the intake fan and air filter compartment was EMD's early attempt at a pressurized carbody. After entering the car body interior, the intake air was used as combustion air for the diesel engine itself, and by the generator and traction motor cooling blowers. The combustion air was further filtered by a bank of oil soaked wire mesh filters mounted atop the Roots blowers.

Quoting Preston Cook (writing as W. A. Cuisinier) in Extra 2200 South, Issue 43, Nov-Dec 1973, p. 21:

"E8 air intake for engine and equipment blowers is rather novel. Located in the winterization hatch of each prime mover is a fourth 36 inch fan, similar to the three [radiator] cooling fans, but which blows air downward, into the carbody, through a filter compartment built into the roof hatch. Oil wetted wire mesh cleans the air just before it enters the engine room. This fan can draw air supply from either of two sources, from a duct thru which air enters the carbody behind stainless steel trim grill during summer, or in winter by switching (using handle in the engine room) the position of flaps inside the winterization hatch, it can draw warm air from the exhaust stream of the #1 radiator cooling fan. Unfortunately, like many other devices, this air system too can be completely circumvented by the same negligence, failure to replace the false ceiling panels."

He continues describing the dangers of having unfiltered air in the carbody, which can cause road failures by flashovers due to dirt-clogged electrical gear. There is also an excellent drawing that shows the flow of air through the roof top hatch, in both summer and winter positions. For those who are close, or who plan to be there on either vacation or business, the E8 model at the Smithsonian in Washington DC also shows this in section and cut-away.

This issue of X2200 also has several detail photos of the carbody interior of E8/9s, along with a cut-away drawing, and a complete E8 and E9 roster, including Amtrak, as of March 1, 1974.

A completely different reason for the snow shields is told among UP's mechanical employees. Warren Johnson, a 30-year veteran mechanic who retired from UP's Salt Lake diesel shop, remembers being told that the snow shields on UP's E units were in fact "put on top of the locomotive to disturb the air at the top of the locomotive. The reason they wanted to do this was to break up the exhaust coming out of the top of the locomotive. Who would want to ride in a domeliner and see nothing but exhaust? It worked the same as the smokelifters on the steam engines used in passenger service. The original pieces had angle iron welded to the top as a stiffener as well as something to disturb the air flow across the top."

Snow Shields on GP9s

On the GP units, the general intake air used by the electrical gear was filtered by the filters on the carbody doors, behind the louvers. As with the E8/9s, the engine combustion air was also further filtered by a bank of four standard 18 inch square filters mounted atop the Roots blower. The winterization hatch on a GP unit was not part of the intake air system as on the E8/9. On the GP units the hatch simply allowed heated radiator exhaust air to enter the carbody space above the front of the diesel engine (which was towards the rear of the locomotive). The lever to change from summer to winter was located on the hatch itself, and was held in either position by a bolt. This required the position to be changed by climbing up on the top of the locomotive.

The structures on top of UP's 12 AiResearch turbocharged GP9s modified in 1955-1956, and in 1959, are definitely snowshields. On the AiResearch units, their sole source of intake air was on top of the units, through a filter box that contained eight of the standard 18 inch square oil soaked wire mesh filters. The drawings reproduced in the July 1988 issue of the UPHS "The Streamliner" magazine show this.

The carbody louvers would not have been blanked off, since open louvers would furnish the needed air for the generator cooling fan, and the two rear traction motor blowers. (The two louvers on the equipment door under the GP7 cab were there to provide air for the two front traction motor blowers. EMD soon found out that they were not needed, so to save production costs on later GP9s, GP18s and GP20s, a blank door was used instead.)

As part of UP's GP9 turborcharging program in 1955-1956, additional holes in two GP9s were done to address operating temperature problems at the high altitudes of Wyoming and other western locations on UP. During the initial turbocharger tests in southern California, the modified units ran too hot (on Cajon Pass in California, not in Wyoming), and UP cut the holes to improve air flow to help them run cooler. The holes did not help, and the units ran at almost the same temperature. This information came directly from Lloyd Edson, the head of the turbocharging program. Like on the GP9s, the hole in the top of the winterization hatch on E8/9s may have been added to help the units run cooler. The two programs would have been done during the same 1955-1956 time frame.


UP 3794 was fitted with rear toilet enclosure in February 1982 through November 1990. The modification was done as a test to alleviate crew complaints about odor from toilets installed in the low noses of UP's other units, but was unpopular with the crews due to safety concerns while accessing the new lo action during inclement weather at track speed. To save maintenance costs, the enclosure's access door was welded shut by mid 1985, and was removed completely in November 1990 when 3794 was rebuilt as one of the prototype units of the SD40-2 Life Extension Program, which rebuilt as total of 423 units between late 1990 and late 1999.

Train Indicators - Number Boards

Trains with diesel locomotives as their motive power used, per the rule book, train numbers in their number boards, with the rule using the term "train indicator."

The earliest diesel locomotives in mainline service, dating back to the late 1930s, had small number boards on the sides of their noses. Compared to the train indicators on steam locomotives, the indicators (number boards, or number boxes) on diesel locomotives were quite small and difficult to see. This difference became apparent during World War II and the large numbers of trains being operated. Although research has not yet found a specific example of a misreading of a train number in a diesel-powered train, with the end of the war, rules were changed that brought larger train indicators to the noses of diesel locomotives on some railroads, especially UP, SP, and AT&SF in the West. The first production diesel locomotive delivered delivered to Union Pacific with the larger train indicators were UP's EMD E7s, delivered in September 1946.

The passenger locomotives from the late 1930s and early 1940s all originally had small side-mounted number boards. A check of EMD parts catalogs shows that EMD offered what it called three-digit, four-digit and five-digit number boxes, as well as four-digit and five-digit 45-degree-mounted number boxes. On UP, the EMD E7s of 1946 had the 45-degree-mounted number boxes and were the first with factory-installed larger number boards. The F-M Erie-built locomotives of 1945 had small train indicators, but the Erie-built locomotives of 1947 and later had a version of a 45-degree-mounted train indicator, but still quite small.

In 1946 there was an apparent change in operating rules or guidance that changed the need for train identification, or train indicators. Research has not yet found if the change was on the national level, with AAR interchange rules, or ICC safety rules, or possibly more of a localized agreement among SP, UP and AT&SF, for operation of trains just in California.

Why did EMD begin to offer its 45-degree number box in 1946? Research suggests that EMD would not have done it on speculation as an optional item. On-going research using photographs and printed materials, indicates the following locomotives were built by EMD with 45-degree number boxes.

Using delivery of new E7 passenger locomotives from EMD in 1946 and 1947, the roads that received E7s from the factory with 45-degree large number boxes, appears to be limited to UP (UP 959A in August 1946), SP (SP 6000 in April 1947), Missouri Pacific (MP 7005 in March 1947), and Missouri-Kansas-Texas (MKT 101A in March 1947). Seaboard Air Line received E7s as early as 1945, but it was after SAL 3036 in February 1948 that they were equipped with 45-degree number boxes. Atlantic Coast Line E7 537 built in June 1946 has small number boards and ACL 538 built in July 1948 had large number boards.

Using delivery of new F3 freight locomotives from EMD in 1946 and 1947, the roads receiving F3s with 45-degree number boxes included Santa Fe's first four EMD F3s in October 1946. UP's first F3s, and SP's first F3s were delivered in May 1947 with the larger angled number boards. Other examples for other railroads' EMD F3s with the new angled number boxes include the first of three groups of F3s for B&O, numbered as B&O 82-88 series, EMD order E757, delivered in July 1947.

The first freight units on Union Pacific with 45-degree-mounted number boards from EMD were the F3 freight units in the 1400 series in May 1947. The Alco FA freight units came in June 1947, with large angled number boards. After the E7s of 1946, the first passenger units with 45-degree-mounted number boards were the Alco PA passenger units in September 1947. Also in September 1947, EMD delivered the EMD F3 passenger series in the 964-series.

On Union Pacific, for the existing passenger units delivered before 1946 (except the two E2 units), Union Pacific's engineering department's drawing index shows a drawing created on December 2, 1947: "Train Indicator Box" for 904A, 924A, 951A, 953A through 958A. A matching drawing for "Train Indicator & Classification Light" was created on the same day. A photo of one of the E6s on January 30, 1948 shows that it still had its small side-mounted number boards.

On May 1, 1948, Union Pacific's engineering department created a drawing for the "Train Indicator and Classification Light" for the E3 and E6 locomotives 991-997, just recently renumbered from 951A, 953A through 958A. A photo of UP 996 on August 7, 1948 shows it with the small side number boards.

For the two E2 units, research has not yet found a reference in the drawing index for these two unique locomotives. The addition of large number boxes was quite obvious on these two units' streamlined noses. The modification was apparently done between mid 1947 and early 1948. Photos of SF-1 after August 1946 when it was renumbered to 901A, show it with side-mounted small number boards. The LA-1 was renumbered to 921A in August 1946, and a photo dated June 1, 1947 shows it with the small side-mounted number boards. There are numerous photos of the SF-1 E2 locomotive taken after the March 1948 end of joint ownership, showing the locomotive as SP 6011A, with large 45-degree-mounted train indicators. The former LA-1 E2 locomotive became C&NW 5003A, and photos after March 1948 also show it with large 45-degree-mounted train indicators.

For trains operating over AT&SF tracks over Cajon Summit, between Daggett and Riverside, California, Union Pacific trains showed the locomotive number in their number boards, in accordance with AT&SF operating practice.

(Read more about steam locomotive train number indicators)

(See also: Number Boards on Diesel Locomotives, above)

Uncoupling Levers

(See Footboards, above)